Ben Forta

FULL COLOR

‘Now with challenge

Squestions to gauge
and improve
proficiency.

SamsTeach Yourself

Ben Forta

SamsTeach Yourself

SaL

Fifth Edition

SAMS 221 River Street, Hoboken, NJ 07030

Sams Teach Yourself SQL in 10 Minutes, Fifth Editlon
Copyright © 2020 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions/. No patent liability is assumed with respect

to the use of the information contained herein. Although every precaution has |

been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-518279-6
ISBN-10: 0-13-518279-4
Library of Congress Control Number: 2019910840

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest
to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warnlng and Disclalmer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The author and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Speclal Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Cover credit mickyteam/ Shutterstock

Editor-in-Chief
Mark Taub
Acquisitions
Editor

Kim Spenceley

Development
Editor

Mark Taber

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Chuck Hutchinson

Indexer
Tim Wright

Proofreader
Abigail Manheim

Technical Editor
Benjamin Schupak

Designer
Chuti Prasertsith

Compositor

. codeMantra

Contents at a Glance

o o0 WN B

© 00

10
11
12
13
14
15
16
17
18
19
20
21
22

Introduction.

Understanding SQL

Retrieving Data |

Sorting Retrieved Data

Filtering Data

Advanced Data Filtering

Using Wildcard Filtering

Creating Calculated Fields

Using Data Manipulation Functions
Summarizing Data

Grouping Data

Working with Subqueries

Joining Tables

Creating Advanced Joins
Combining Queries

Inserting Data

Updating and Deleting Data
Creating and Manipulating Tables .
Using Views

Working with Stored Procedures
Managing Transaction Processing
Using Cursors

Understanding Advanced SQL Features

13
25
33
41
51
59
69
79
89
99
107
117
127
135
145
151
161
171
179
187

193

Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

Appendix A. Sample Table Scripts.
Appendix B. SQL Statement Syntax
Appendix C. Using SQL Datatypes
Appendix D. SQL Reserved Words
Index ...

1203

209
215
221

227

Table of Contents

Introduction 1
Who Is the Teach Yourself SQL Book For?.... L4
DBMSs Covered in This Book.. 2
Conventions Used in This Book.... 2
Understanding SQL 5
Database Basics.5
What Is SQL?. 10
Try WYourself10
Summary.12
Retrieving Data 13
The seLECT Statement. ... : .13
Retrieving Individual Columns........ P .14
Retrieving Multiple Columns 16
Retrieving All Columns 17
Retrieving Distinct Rows ..., ... 17
Limiting Results 19
Using Comments...... 21
Summary.. . .. L e .22
Challenges. 23
Sorting Retrieved Data 25
Sorting Data 25
Sorting by Multiple Columns 27
Sorting by Column Position 28
Specifying Sort Direction....29
SUMMANY .. 30
Challenges. 31
Filtering Data 33
Using the WHERE Clause.......o 33
The wHERE Clause Operators...... T 34
Summary........ ... RSP 39
Challenges......... .. 40

i

Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

Advanced Data Filtering 41
Combining WHERE ClauSes.. 41
Using the IN Operatoro e e45
Using the NOT Operator i 46

Summary...... .. e ... A8
Challenges. 49

io0

SUMMAIY.. ..o e .57
Challenges.. . .. 58
Creating Calculated Fields 59
Understanding Calculated Fields59
Concatenating Fields 60
Performing Mathematical Calculations65
SUMIMAIY .. e 67
Challenges.......... B .68
Using Data Manipulation Functions 69
Understanding Functions 69

Using Functions10

SUMMANY .. 77
Challenges.... . . . T 78
Summarizing Data 79
Using Aggregate FUNCHIONS.... 79
Aggregates on DistinctValues8b
Combining Aggregate Functions.. S L . . 86
Summary........ O P O DR 87

Challenges.............. 88

Grouping Data 89
Understanding Data Grouping 89
Creating GroupsS90

Filtering GroupS. o 91

11

13

14

15

Table of Contents vii

Grouping and SOrting94
SELECT Clause Ordering... PP 96
Summary............ . .. 96
Challenges...... 97
Working with Subqueries 99
Understanding Subqueries . 99
Filtering by Subquery......99
Using Subqueries as Calculated Fields e ...1083
Summary.... 105
Challenges.. 106
2 Joining Tables 107
Understanding Joins....... 107
Creatinga lJoin..... 109
Summary............ O .. 115
Challenges........ 116
Creating Advanced Joins 117
Using Table Aliases o117
Using Different Join Types.... 118
Using Joins with Aggregate Functions 123
Using Joins and Join Conditions.. PP PP e 124
SUMMIANY . . 125
Challenges. 126
Combining Queries 127
Understanding Combined Queries...... B 127
Creating Combined Queries... .. SR OO 127
SUMIMAY 133
Challenges.......................... . TR ... 134
Inserting Data 135
Understanding Data Insertion..... 135
Copying from One Table to Another.. PSR 141
SUMMANY .. 142
Challenges.......... R U PSP SOV 143

viii Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

16 Updating and Deleting Data 145
Updating Data. TP .. 145
Deleting Data.147
Guidelines for Updating and Deleting Data. 149
SUMMAIY. ... 149
Challenges. 150

17 Creating and Manipulating Tables 151
Creating Tables 151
Updating Tables155
Deleting Tables 157
Renaming Tables158
SUMMArY..... 158

Challenges.....1B9

Understanding VIews 161
Creating VIeWS 164
SUMMANY ... 169
Challenges. e 170
19 Working with Stored Procedures 171
Understanding Stored Procedures 171
Understanding Why to Use Stored Procedures.. 172
Executing Stored Procedures.... e 173
Creating Stored Procedures . . . 174

sSummary. 178

20 Managing Transaction Processing 179
Understanding Transaction Processing. 479
Controlling Transactions................... 181
SUMMI Y . 185

21 Using Cursors 187
Understanding Cursors T TP P PP ORI UPUPR 187
Working with Cursors...... PP .188

SUMIMAIY . ..192

Table of Contents ix

22 Understanding Advanced SQL Features 193
Understanding Constraints......193
Understanding Indexes.. 198
Understanding Triggers200
Database Security. 202
Summary.. 202

A Sample Table Scripts 203
Understanding the Sample Tables 203
Obtaining the Sample Tables....207

B SQL Statement Syntax 209
ALTER TABLE. ot e e 209
COMMIT....... . . oo i o o U TOTOUT 209
CREATE INDEX o210
CREATE PROCEDUREoooioiiiii e 210

CREATE TABLE.cooiiiiiii e 210
CREATE VIEW..... oo i i i o 0211
DELETE o0t e e e S 211
DROP | oot o e 21

INSERT . (o0 it o e e 211
INSERT SELECTooiie i i e 212
ROLLBACK oot e e i e e 212
SELECT ... oo oo ot et e 212
UPDATE i i BT S ..243
C Using SQL Datatypes 215
String Datatypes RPN 216
Numeric Datatypes. 217
Date and Time Datatypes 218
Binary Datatypes. 219
D SQL Reserved Words 221

Index 227

About the Author

Ben Forta is Adobe’s Senior Director of Education Initiatives and has three decades
of experience in the computer industry in product development, support, training, and
product marketing. He is the author of the best-selling Sams Teach Yourself SQL in

10 Minutes (including spinoff titles on MariaDB, MySQL, SQL Server T-SQL, and
Oracle PL/SQL), Learning Regular Expressions, as well as books on Java, Windows,
and more. He has extensive experience in database design and development, has
implemented databases for several highly successful commercial software programs
and websites, and is a frequent lecturer and columnist on application development
and Internet technologies. Ben lives in Oak Park, Michigan, with his wife, Marcy, and
their children. He welcomes your email at beneforta.com and invites you to visit his
website at http://forta.com.

Acknowledgments

Thanks to the team at Sams for all these years of support, dedication, and encourage-
ment. Over the past two decades, we’ve created 40+ books together, but this little
volume is my favorite by far, and I thank you for giving me the creative freedom to
evolve it as I see fit.

Thank you to Amazon.com reviewers who suggested the inclusion of the Challenges,
which are new to this fifth edition.

Thanks to the many thousands of you who provided feedhack on the first four
editions of this book. Fortunately, most of it was positive, and all of it was appreci-
ated. The enhancements and changes in this edition are a direct response to your
feedback, which I continue to welcome.

Thanks to the dozens of colleges and universities that have made this book part of
their IT and computer science curriculums. Being included and trusted by professors
and teachers this way is immensely rewarding and equally humbling.

And finally, thanks to the almost half-million of you who bought the previous

editions (and spinoffs) of this book, making it not just my best-selling title, but also
the best-selling book on the subject. Your continued support is the highest compliment
an author can ever be paid.

—Ben Forta

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of
this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: community @informit.com

Reader Services

Register your copy of Sams Teach Yourself SQL in 10 Minutes a Day at informit.com
for convenient access to downloads, updates, and corrections as they become available.
To start the registration process, go to informit.com/register and log in or create an
account*. Enter the product ISBN, 9780135182796, and click Submit. Once the pro-
cess is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive
exclusive discounts on future editions of this product.

introduction

SQL is the most widely used database language. Whether you are an application
developer, database administrator, web application designer, mobile app developer,
or a user of popular data reporting tools, a good working knowledge of SQL is an
important part of interacting with databases.

This book was born out of necessity. I had been teaching Web application
development for several years, and students were constantly asking for SQL book
recommendations. There are lots of SQL books out there. Some are actually very
good. But they all have one thing in common: for most users they teach just too
much information. Instead of teaching SQL itself, most books teach everything from
database design and normalization to relational database theory and administrative
concerns. And while those are all important topics, they are not of interest to most of
us who just need to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I turned that
classroom experience into the book you are holding. Sams Teach Yourself SOL in

10 Minutes will teach you SQL you need to know, starting with simple data retrieval
and working on to more complex topics including the use of joins, subqueries, stored
procedures, cursors, triggers, and table constraints. You’ll learn methodically, system-
atically, and simply—in lessons that will each take 10 minutes or less to complete.

Now in its fifth edition, this book has taught SQL to almost a half million English-
speaking users, and has been translated into over a dozen other languages too so as to
help users the world over.

New to this edition is the inclusion of lesson-specific challenges at the end of each
lesson 2 - 18. They provide a chance for you to take the SQL you have learned and
apply it to different scenarios and problems. The answers to each are not in the book,
but, don’t worry, you can find them on the book web page at
http://forta.com/books/0135182794 .

Now it is your turn. Turn to Lesson 1, and get to work. You’ll be writing world-class
SQL in no time at all.

Who Is the Teach Yourself SQL

Book For?
This book is for you if

» You are new to SQL.

» You want to quickly learn how to get the most out of SQL.

2 Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

» You want to learn how to use SQL in your own application development.

» You want to be productive quickly and easily in SQL without having to call
someone for help.

DBMSs Covered in This Book

For the most part, the SQL taught in this book will apply to any Database Management
System (DBMS). However, as all SQL implementations are not created equal, the
following DBMSs are explicitly covered (and specific instructions or notes are included
where needed):

» IBM DB2 (including DB2 in the cloud)
» Microsoft SQL Server (including Microsoft SQL Server Express)
» MariaDB
» MySQL
» Oracle (including Oracle Express)
» PostgreSQL
» SQLite
Example databases (or SQL scripts to create the example databases) are available

for all of these DBMSs on the book web page at
http://forta.com/books/0135182794.

Conventions Used in This Book

This book uses different typefaces to differentiate between code and regular English,
and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in
monospace type.

It will look like this to mimic the way text looks on your screen,

The text that makes up programming code has no color. But most tools used to create
and edit code (in all programming languages, including SQL) do display code in
color. The reason for doing so is that this makes it easier to read long code sequences,

introduction 3

and it also helps spot typos and errors (when colors don’t match or look right you
know something is wrong). The SQL code throughout this book is printed in color
with different colors used for SQL statements, clauses, strings, numbers, comments,
and so on. Just be aware that there is no standard way to color code and different tools
use different color schemes, so the colors you see in your own editor while trying the
examples may not exactly match what’s in the book.

This arrow (w) at the beginning of a line of code means that a single line of code is
too long to fit on the printed page. Continue typing all the characters after the w as
though they were part of the preceding line.

NOTE:

A Note presents interesting pieces of information related to the surrounding
discussion.

TIP:
A Tip offers advice or teaches an easier way to do something.

CAUTION:

A Caution advises you about potential problems and helps you steer clear of
disaster.

PLAIN ENGLISH:
New Term icons provide clear definitions of new, essential terms.

input v

The Input icon identifies code that you can type in. It usually appears next to a listing.

Output v

The Output icon highlights the output produced by running a program. It usually
appears after a listing.

Analysis v

The Analysis icon alerts you to the author’s line-by-line analysis of a program.

i

i i P T o TR L YT A T TP Y e et ey s ety oS - e ¥liedapthper)

In this lesson, you’ll learn exactly what SQL is and what it will do for you.

Database Basics

The fact that you are reading a book on SQL indicates that you, somehow, need to
interact with databases. SQL is a language used to do just this, so before looking at
SQL itself, it is important that you understand some basic concepts about databases
and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you
select a contact on your phone or a name from your email address book, you are using
a database. If you conduct a Google search, you are using a database. When you
log in to your network at work, you are validating your name and password against
a database. Even when you use your ATM card at a cash machine, you are using
databases for PIN verification and balance checking.

But even though we all use databases all the time, there remains much confusion
over what exactly a database is. This is especially true because different people use
the same database terms to mean different things. Therefore, a good place to start our
study is with a list and explanation of the most important database terms.

1. Reviewing Basic Concepts

What follows is a very brief overview of some basic database concepts. It is
intended to either jolt your memory if you already have some database experi-
ence, or to provide you with the absolute basics if you are new to databases.
Understanding databases is an important part of mastering SQL, and you might
want to find a good book on database fundamentals to brush up on the subject
if needed.

Databases

The term database is used in many different ways, but for our purposes (and indeed,
from SQL’s perspective) a database is a collection of data stored in some organized
fashion. The simplest way to think of it is to imagine a database as a filing cabinet.

6 LESSON 1: Understanding SQL

The filing cabinet is simply a physical location to store data, regardless of what that
data is or how it is organized.

Database
A container (usually a file or set of files) to store organized data. o

' Misuse Causes Confusion

People often use the term database to refer to the database software they are
running. This is incorrect and a source of much confusion. Database software
is actually called the Database Management System (or DBMS) The database
| is the container created and manipulated via the DBMS, and exactly what ,,fe-v
database is and what form it takes vary from one database to the ﬂext %

Tables

When you store information in your filing cabinet, you don’t just toss it in a drawer.
Rather, you create files within the filing cabinet, and then you file related data in
specific files.

In the database world, that file is called a table. A table is a structured file that can
store data of a specific type. A table might contain a list of customers, a product
catalog, or any other list of information.

' Table
A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one list. You
would never store a list of customers and a list of orders in the same database table.
Doing so would make subsequent retrieval and access difficult. Rather, you’d create
two tables, one for each list.

Every table in a database has a name that identifies it. That name is always
unique—meaning no other table in that database can have the same name.

Table Names :
What makes a table name unique is actually a combination of several things
including the database name and table name. Some databases alsc use the
name of the database owner as part of the unique name. This means that while -
you cannot use the same table hame twice in the same database, you definitely :
can reuse table names in different databases.

Database Basics 7

Tables have characteristics and properties that define how data is stored in them.
These include information about what data may be stored, how it is broken up, how
individual pieces of information are named, and much more. This set of information
that describes a table is known as a schema, and schemas are used to describe specific
tables within a database, as well as entire databases (and the relationship between
tables in them, if any).

TERM: Schema
Information about database and table layout and properties.

Columns and Datatypes

Tables are made up of columns. A column contains a particular piece of information
within a table.

WTERM: Column
A single field in a table. All tables are made up of one or more columns:

The best way to understand this is to envision database tables as grids, somewhat like
spreadsheets. Each column in the grid contains a particular piece of information. In

a customer table, for example, one column contains the customer number, another
contains the customer name, and the address, city, state, and ZIP code are all stored in
their own ¢olumns.

‘. Breaking Up Data
It is extremely important to break data into multiple columns correctly. For
example, city, state, and ZIP (or postal) code should always be separate col-
umns. When you break these out, it becomes possible to sort or filter data by
specific columns (for example, to find all customers in a particular state or in
a particular city). If city and state are combined into one column, it would be
extremely difficult to sort or filter by state.
When you break up data, the level of granularity is up to you and your specific
requirements. For example, addresses are typically stored with the house num-
ber-and street name together. This is fine, unless you might one day need to
_sort data by street name; in which case splitting house number and street name
would be preferable. :

Each column in a database has an associated datatype. A datatype defines what type
of data the column can contain. For example, if the column were to contain a number
(perhaps the number of items in an order), the datatype would be a numeric datatype.

8 LESSON 1: Understanding SQL

If the column were to contain dates, text, notes, currency amounts, and so on, the
appropriate datatype would be used to specify this.

W TERM: Datatype
A type of allowed data. Every table column has an associated datatype that
restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for example,
preventing the entry of alphabetical characters into a numeric field). Datatypes also
help sort data correctly and play an important role in optimizing disk usage. As such,
special attention must be given to picking the right datatype when tables are created.

CALTION: Datatype Compatibility

Datatypes and their names are one of the primary sources of SQL incompatibil-

ity. While most basic datatypes are supported consistently, many more advanced

datatypes are not. And worse, occasionally you'll find that the same datatype is

referred to by different names in different DBMSs. There is not much you can do
 about this; but it is important to keep in mind when you create table schemas.

Rows

Data in a table is stored in rows; each record saved is stored in its own row. Again,
envisioning a table as a spreadsheet style grid, the vertical columns in the grid are the
table columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The number of
rows in the table is the number of records in it.

I Row
A record in a table.

1O L Records or Rows? ; _

You may hear users refer to database records when referring to rows. For the
- most part the two terms are used interchangeably, but row is technically the

correct term.

Database Basics 9

Primary Keys

Every row in a table should have some column (or set of columns) that uniquely
identifies it. A table containing customers might use a customer number column for
this purpose, whereas a table containing orders might use the order ID. An employee
list table might use an employee ID. A table containing a list of books might use the
ISBN for this purpose.

W TERM: Primary key
A column (or set of columns) whose values uniquely identify every row in a table.

This column (or set of columns) that uniquely identifies each row in a table is called
a primary key. The primary key is used to refer to a specific row. Without a primary
key, updating or deleting specific rows in a table becomes extremely difficult as there
is no guaranteed safe way to refer to just the rows to be affected.

Always Define Primary Keys

Although primary keys are not actually required, most database designers
ensure that every table they create has a primary key so that future data
manipulation is possible and manageable.

Any column in a table can be defined as the primary key, as long as it meets the
following conditions:

» No two rows can have the same primary key value.

» Every row must have a value in the primary key column(s). (So, no NULL
values.)

» Values in primary key columns should never be modified or updated.

» Primary key values should never be reused. (If a row is deleted from the
table, its primary key may not be assigned to any new rows in the future.)

Primary keys are usually defined on a single column within a table. But this is not
required, and multiple columns may be used together as a primary key. When multiple
columns are used, the rules listed above must apply to all columns, and the values

of all columns together must be unique (individual columns need not have unique
values).

There is another very important type of key called a foreign key, but I'll get to that
later on in Lesson 12, “Joining Tables.”

10 LESSON 1: Understanding SQL

What Is SQL?

SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for Structured
Query Language. SQL is a language designed specifically for communicating with
databases.

Unlike other languages (spoken languages like English, or programming languages
like Java, C, or Python), SQL is made up of very few words. This is deliberate. SQL
is designed to do one thing and do it well—provide you with a simple and efficient
way to read and write data from a database.

What are the advantages of SQL?

» SQL is not a proprietary language used by specific database vendors. Almost
every major DBMS supports SQL, so learning this one language will enable
you to interact with just about every database you’ll run into.

» SQL is easy to learn. The statements are all made up of descriptive English
words, and there aren’t that many of them.

» Despite its apparent simplicity, SQL is a very powerful language, and by
cleverly using and combining its language elements, you can perform very
complex and sophisticated database operations.

And with that, let’s learn SQL.

SQL Extensions

Many DBMS vendors have extended their support for SQL by adding statements
or instructions to the Janguage. The purpose of these extensions is to provide
additional functionality or simplified ways to perform specific operations. And
while often extremely useful, these extensions tend to be very DBMS specific,
and they are rarely supported by more than a single vendor.
Standard SQL is governed by the ANSI standards committee, and is thus called
ANSI SQL. All major DBMSs, even those with their own extensions, support
ANSI SQL. Individual implementations have their own names (PL-SQL, used by
Oracle; Transact-SQL, used by Microsoft SQL Server; and so on). -
For the most part, the SQL taught in this book is ANSI SQL. On the odd

| occasion where DBMS-specific SQL is used, it is so noted.

Try It Yourself

As with any language, the best way to learn SQL is to try it for yourself. To do this,
you’ll need a database and an application with which to test your SQL statements.

Try It Yourself 11

All of the lessons in this book use real SQL statements and real database tables, and
you should have access to a DBMS to follow along.

Which DBMS Should You Use?
You need access to a DBMS to follow along. But which should you use?
The good news is that the SQL you’ll learn in this book is relevant to every
major DBMS. As such, your choice of DBMS should primarily be based on
convenience and simplicity.
There are basically two ways to proceed. You can install a DBMS (and support-
ing client software) on your own computer; this will give you the greatest access
and control. But for many, the trickiest part of getting started learning SQL is
actually getting a DBMS installed and configured. The alternative is to access
a remote (or cloud-based) DBMS; this way you have nothing to manage and
install.
You have lots of options if you decide to install your own DBMS. Here are a
couple of suggestions:

» MySQL (or its spin-off MariaDB) is a really good choice in that it is free,
supported on every major operating system, is easy to install, and is one
of the most popular DBMSs in use. MySQL comes with a command-line
tool for actually entering your SQL, but you are better using the optional
MySQL Workbench, so download that, too (it's usually a separate install).

» Windows users may want to use Microsoft SQL Server Express. This free
version of the popular and powerful SQL Server includes a userfriendly
client named SQL Server Management Studio.

The alternative is to use a remote (or cloud-based) DBMS:

» If you are learning SQL to use at work, your employer may have a DBMS
that you can use. If this is an option, you'll likely be given your own
DBMS login and a tool to use to connect to the DBMS to enter and test
your SQL.

» Cloud-based DBMSs are instances of DBMSs running on virtual servers,
effectively giving you the benefits of your own DBMS without having to
actually install one locally. All of the major cloud service vendors (includ-
ing Google, Amazon, and Microsoft) offer DBMSs in the cloud. Unfor-
tunately, at the time of this book’s writing, setting these up (including
configuring secure remote access) isn't trivial and is often more work than
installing your own DBMS locally. The exceptions are Oracle’s Live SQL
and IBM’s Db2 on Cloud, which offer a free version that includes a web
interface. Just type your SQL in the web browser, and you're good to go.

You'll find links to all the options mentioned here on the book's web page, and
as DBMS options evolve that page will be updated with tips and suggestions.

12 LESSON 1: Understanding SQL

Once you have access to a DBMS, Appendix A, “Sample Table Scripts,” explains
what the example tables are and provides details on how to obtain (or create) them so
that can may follow along with the instructions in each lesson.

In addition, starting in Lesson 2 you’ll find Challenges after the “Summary” section.
They present you with the opportunity to take your newly acquired SQL knowledge
and apply it to solve problems not explicitly mentioned in the lessons. To verify your
solutions (or if you get stuck and need some help), visit the book’s web page.

Summary

In this first lesson, you learned what SQL is and why it is useful. Because SQL is used
to interact with databases, you also reviewed some basic database terminology.

Retrieving Data

In this lesson, you’ll learn how to use the all-important SELECT statement to retrieve
one or more columns of data from a table.

The seLEcT Statement

As explained in Lesson 1, “Understanding SQL,” SQL statements are made up of
plain English terms. These terms are called keywords, and every SQL statement is
made up of one or more keywords. The SQL statement that you’ll probably use most
frequently is the SELECT statement. Its purpose is to retrieve information from one or
more tables.

NEW TERM: Keyword

A reserved word that is part of the SQL language. Never name a table or column
using a keyword. Appendix D; “SQL Reserved Words,” lists some of the more
common reserved words.

To use SELECT to retrieve table data, you must, at a minimum, specify two pieces of
information—what you want to select and from where you want to select it.

NOTE: Following Along with the Examples

The sample SQL statements (and sample output) throughout the lessons in this
book use a set of data files that are described in Appendix A; “Sample Table
Scripts.” If you'd like to follow along and try the examples yourself (I strongly
recommend that you do so), refer to Appendix A, which contains instructions on
how to download or create these data files.

TIP: Use the Right Database

DBMSs allow you to work with multiple databases (the filing cabinet in the analogy
in Lesson 1). When you installed the sample tables (as per Appendix A), you were
advised to install them in a new database. If you did so, make sure you select that
database before proceeding, just as you did when you created and populated the
sample tables. As you work through these lessons, if you encounter errors about
unknown tables, then you most likely are in the wrong database.

14 LESSON 2: Retrieving Data

Retrieving Individual Columns

We’ll start with a simple SQL SELECT statement, as follows:

input v

SELECT prod name
FROM Products;

Analysisy

The previous statement uses the SELECT statement to retrieve a single column called
prod_name from the Products table. The desired column name is specified right
after the seLECT keyword, and the FroM keyword specifies the name of the table from
which to retrieve the data. The output from this statement is shown in the following:

Output v

prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Raggedy Ann

King doll

Queen doll

Depending on the DBMS and client you are using, you may also see a message telling
you how many rows were retrieved and the processing time. For example, the MySQL
command line would display something like this:

9 rows in set (0.01 sec)

NOTE: Unsorted Data
If you tried this query yourself, you might have discov

displayed in a different order than shown here. If t
 worry—it is working exactly as it is supposed to. |
- explicitly sorted (we'll get to that in the next lesso
_in no order of any significance. It may be the order i

to the table, but it may not. As Jl,m;;g, as your query re
- rows, then it is working.

Retrieving Individual Columns 15

A simple SELECT statement similar to the one used above returns all the rows in a
table. Data is not filtered (so as to retrieve a subset of the results), nor is it sorted.
We’ll discuss these topics in the next few lessons.

117 Terminating Statements

Multiple SQL statements must be separated by semicolons (the ; character).
Most DBMSs do not require that a semicolon be specified after single state-
ments. But Iif your particular DBMS complains, you might have to add it there.
Of course, you can always add a semicolon if you wish. It'll do no harm, even if
it is, in fact, not needed.

NOTE: SQL Statement and Case

It is important to note that SQL statements are not case sensitive, $0 SELECT is
the same as select, which is the same as gelect. Many SQL developers find
that using uppercase for all SQL keywords and lowercase for column and table
names makes code easier to read and debug. However, be aware that while the
SQL language is case-insensitive, the names of tables, columns, and values
may not be (that depends on your DBMS and how it is configured).

11P: Use of White Space :

All extra white space within a SQL statement is ignored when that statement is
processed. SQL statements can be specified on one long line or broken up over
many lings. So, the following three statements are functionally identical:
SELECT prod_name

FROM Preducts:

SELECT prod name FROM Products:

SELECT
prod_name

FROM

Products;

Most SQL developers find that breaking up statements over multiple lines
makes them easier to read and debug.

16 LESSON 2: Retrieving Data

Retrieving Multiple Columns

To retrieve multiple columns from a table, the same SELECT statement is used. The
only difference is that multiple column names must be specified after the SELECT
keyword, and each column must be separated by a comma.

TIP: Take Care with Commas

When selecting multiple columns, be sure to specify a comma between each col-
umn name, but not after the last column name:. Doing so will generate an error.

The following SELECT statement retrieves three columns from the products table:

input ¥

SELECT prod_id, prod_name, prod price
FROM Products;

Analysis v

Just as in the prior example, this statement uses the SELECT statement to retrieve data
from the Products table. In this example, three column names are specified, each
separated by a comma. The output from this statement is shown below:

Output v

prod_id prod_name prod_price
BNBGO1 Fish bean bag toy 3.49
BNBGO02 Bird bean bag toy 3.49
BNBGO3 Rabbit bean bag toy 3.49
BRO1 8 inch teddy bear 5.99
BRO2 12 inch teddy bear 8.99
BRO3 18 inch teddy bear 11.99
RGANO1 Raggedy Ann 4.99
RYLO1 King doll 9.49
RYLO2 Queen dool 9.49

NOTE: Presentation of Data

SQL statements typically return raw, unformatted data, and different DBMSs
and clients may display the data differently (with different alignment or decimal
places, for example). Data formatting is a presentation issue; not a retrieval
issue. Therefore, presentation is typically specified in the application that dis-
plays the data. Actual retrieved data (without application-provided formatting) is
rarely used.

Retrieving Distinct Rows 17

Retrieving All Columns

In addition to being able to specify desired columns (one or more, as seen above),
SELECT statements can also request all columns without having to list them individu-
ally. This is done using the asterisk (*) wildcard character in lieu of actual column
names, as follows:

Input v

SELECT *
FROM Products;

jﬁgna!ysis v

When a wildcard (*) is specified, all the columns in the table are returned. The column
order will typically, but not always, be the physical order in which the columns appear
in the table definition. However, SQL data is seldom displayed as is. (Usually, it is
returned to an application that formats or presents the data as needed). As such, this
should not pose a problem.

CAUTION: Using Wildcards

As a rule, you are better off not using the * wildcard unless you really do need
every column in the table. Even though use of wildcards may save you the time
and effort needed to list the desired columns explicitly, retrieving unneces-
sary columns usually slows down the performance of your retrieval and your
application.

[1P: Retrieving Unknown Columns

There is one big advantage to using wildcards. As you do not explicitly specify
column names (because the asterisk retrieves every column), it is possible to
retrieve columns whose names are unknown.

Retrieving Distinct Rows

As you have seen, SELECT returns all matched rows. But what if you do not want
every occurrence of every value? For example, suppose you want the vendor ID of all
vendors with products in your Products table:

Input \ 4

SELECT vend_id
FROM Products;

18 LESSON 2: Retrieving Data

Output v

vend_id

The SELECT statement returned nine rows (even though there are only three unique
vendors in that list) because there are nine products listed in the Products table. So
how could you retrieve a list of distinct values?

The solution is to use the DISTINCT keyword, which, as its name implies, instructs the
database to only return distinct values.

SELECT DISTINCT Vend__id
FROM Products;

Analysis v

SELECT DISTINCT vend_id tells the DBMS to only return distinct (unique) vend_id
rows, and so only three rows are returned, as seen in the following output. If used, the
DISTINCT keyword must be placed directly in front of the column names.

Output v

Can’t Be Partlally DISTINCT

| The prsTIneT keyword applies to all columns, not.
you were to specify SELECT DISTINCT vend_id,]
rows would be retrieved because the combined sp
six unique combinations. To see the difference; try these two statemel
compare the restilts: :

‘ SELECT DISTINCT vend_id, prod_price FROM Products;

- SELECT vend id, prod price FROM Products;

Limiting Resulis 19

Limiting Results

SELECT statements return all matched rows, possibly every row in the specified table.
What if you want to return just the first row or a set number of rows? This is doable,
but unfortunately, this is one of those situations where all SQL implementations are
not created equal.

In Microsoft SQL Server you can use the Top keyword to limit the top number of
entries, as seen here:

input v

SELECT TOP 5 prod_name
FROM Products;

Output v

prod_name

'8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy

Analysis v

The previous statement uses the SELECT TOP 5 statement to retrieve just the first
five rows.

If you are using DB2, well, then you get to use SQL unique to that DBMS, like this:

!ﬁl;'lput v

SELECT prod_name
FROM Products
FETCH FIRST 5 ROWS ONLY;

Analysis v

FETCH FIRST 5 ROWS ONLY does exactly what it suggests.

If you are using Oracle, you need to count rows based on RowNUM (a row number
counter) like this:

input v

SELECT prod name
FROM Products
WHERE ROWNUM <=5;

20 LESSON 2: Retrieving Data

If you are using MySQL, MariaDB, PostgreSQL, or SQLite, you can use the LIMIT
clause, as follows:

input v

SELECT prod_name
FROM Products
LIMIT 5;

Analysisv

The previous statement uses the SELECT statement to retrieve a single column.
LIMIT 5 instructs the supported DBMSs to return no more than five rows. The output
from this statement is shown in the following code.

To get the next five rows, specify both where to start and the number of rows to
retrieve, like this:

input v

SELECT prod_name
FROM Products
L®IT 5 OFFSET 5;

Analysis v

LIMIT 5 OFFSET 5 instructs supported DBMSs to return five rows starting from
row 5. The first number is the number of rows to retrieve, and the second is where to
start. The output from this statement is shown in the following code:

Output v

prod name

Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

So, LIMIT specifies the number of rows to return. LIMIT with an OFFSET specifies
where to start from. In our example, there are only nine products in the Products
table, so LIMIT 5 OFFSET 5 returned just four rows (as there was no fifth).

CAUTION: Row 0

The first row retrieved is row o, not row 1. As such, LIMIT 1 OFFSET 1 will
retrieve the second row, not the first one.

Using Comments 21

TIP: MySQL, MariaDB, and SQLite Shortcut

MySQL, MariaDB, and SQLite support a shorthand version of LIMIT 4
OFFSET 3, enabling you'to combine them as LIMIT 3,4. Using this syntax,
the value before the , is the oFFSET and the value after the , is the LIMIT
(yes, they are reversed, so be careful).

£: Not ALL SQL Is Created Equal

I included this section on limiting results for one reason only—to demonstrate
that while SQL is usually quite consistent across implementations, you can’t
rely on it always being so. While very basic statements tend to be very portable,
more complex ones tend to be less so. Keep that in mind as you search for
SQL solutions to specific problems.

Using Comments

As you have seen, SQL. statements are instructions that are processed by your DBMS.
But what if you wanted to include text that you’d not want processed and executed?
Why would you ever want to do this? Here are a few reasons:

» The SQL statements we’ve been using here are all very short and very
simple. But, as your SQL statements grow (in length and complexity),
you’ll want to include descriptive comments (for your own future reference
or for whoever has to work on the project next). These comments need to
be embedded in the SQL scripts, but they are obviously not intended for
actual DBMS processing. (For an example of this, see the create.sql and
populate.sql files used in Appendix B, “SQL Statement Syntax™).

» The same is true for headers at the top of a SQL file (one that is saving
SQL statements perhaps for future use), usually containing a description and
notes, and perhaps even programmer contact information. (This use case is
also seen in the Appendix B .sql files.).

» Another important use for comments is to temporarily stop SQL code from
being executed. If you were working with a long SQL statement, and wanted
to test just part of it, you could comment out some of the code so that DBMS
sees it as‘comments and ignores it.

Most DBMSs support several forms of comment syntax. We’ll start with inline comments:

Input v

SELECT prod_name ~- this is a comment
FROM Products;

22 LESSON 2: Retrieving Data

Analysis v

Comments may be embedded inline using -- (two hyphens). Any text on the same
line that is after the -- is considered comment text, making this a good option for
describing columns in a CREATE TABLE statement, for example.

Here is another form of inline comment (although less commonly supported):

input v

This is a comment
SELECT prod_name
FROM Products;

A # at the start of a line makes the entire line a comment. You can see this format
comment used in the accompanying create.=ql and populate.sql scripts.

You can also create multiline comments and comments that stop and start anywhere
within the script:

/* SELECT prod name, vend_ id
FROM Products; */

SELECT prod name

FROM Products;

Analysis v

/* starts a comment, and */ ends it. Anything between /* and */ is comment text.
This type of comment is often used to comment out code, as seen in this example.
Here, two SELECT statements are defined, but the first won’t execute because it has
been commented out.

Summary

In this lesson, you learned how to use the SQL SELECT statement to retrieve a single
table column, multiple table columns, and all table columns. You also learned how to
return distinct values and how to comment your code. And unfortunately, you were
also introduced to the fact that more complex SQL tends to be less portable SQL.
Next, you’ll learn how to sort the retrieved data.

Challenges 23

Challenges

1. Write a SQL statement to retrieve all customer IDs (cust_id) from the
Customers table,

2. The orderItems table contains every item ordered (and some were ordered
multiple times). Write a SQL statement to retrieve a list of the products
(prod_id) ordered (not every order, just a unique list of products). Here’s
a hint: you should end up with seven unique rows displayed.

3. Write a SQL statement that retrieves all columns from the Customers table
and an alternate SELECT that retrieves just the customer ID. Use comments to
comment out one SELECT so as to be able to run the other. (And, of course,
test both statements.)

T1P: Where Are the Answers?

Challenge answers are on the book’s web page:
http://forta.com/books/0135182794.

LESSON 3
Sorting Retrieved Data

In this lesson, you will learn how to use the SELECT statement’s ORDER BY clause to
sort retrieved data as needed.

Sorting Data

As you learned in the last lesson, the following SQL statement returns a single column
from a database table. But look at the output. The data appears to be displayed in no
particular order at all.

input v

SELECT prod_name
FROM Products;

Output v

prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Raggedy Ann

King doll

Queen doll

Actually, the retrieved data is not displayed in a mere random order. If unsorted, data
will typically be displayed in the order in which it appears in the underlying tables.
This could be the order in which the data was added to the tables initially. However,
if data was subsequently updated or deleted, the order will be affected by how the
DBMS reuses reclaimed storage space. The end result is that you cannot (and should
not) rely on the sort order if you do not explicitly control it. Relational database

26 LESSON 3: Sorting Retrieved Data

design theory states that the sequence of retrieved data cannot be assumed to have
significance if ordering was not explicitly specified.

NEW TERM: C|ause

SQL statements are made up of clauses, some req_: ir i ar
A clause usually consists of a keyword and supplied dat
- the SELECT statement’s FROM clause, which you saw in the last Iesson

To explicitly sort data retrieved using a SELECT statement, you use the ORDER BY
clause. ORDER BY takes the name of one or more columns by which to sort the output.
Look at the following example:

input v

SELECT prod_name
FROM Products
ORDER BY prod_name;

Analysis v

This statement is identical to the earlier statement, except it also specifies an ORDER BY
clause instructing the DBMS software to sort the data by the prod_name column. The
results are as follows:

Output v

prod name

12 inch teddy bear
18 inch teddy bear
8 inch teddy bear
Bird bean bag toy
Fish bean bag toy
King doll

Queen doll

Rabbit bean bag toy
Raggedy Ann

CAUTION: Position of orDER BY Clause
When specifying an oRDER BY clause, be sure that it is the last clause in your
SELECT statement. If it is not the last clause, an error will be generated.

Sorting by Multiple Columns 27

TIP: Sorting by Nonselected Columns :

Although more often than not the columns used in an ORDER BY clause will be
ones selected for display, this is actually not required. It is perfectly legal to
sort data by a column that is not retrieved.

Sorting by Multiple Columns

It is often necessary to sort data by more than one column. For example, if you are
displaying an employee list, you might want to display it sorted by last name and first
name (first by last name, and then within each last name sort by first name). This type
of sort would be useful if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas
(just as you do when you are selecting multiple columns).

The following code retrieves three columns and sorts the results by two of them—first
by price and then by name.

By

SELECT prod_id, prod_price, prod_ name
FROM Products
ORDER BY prod price, prod_name;

Output v

prod_id prod_price prod_name

BNBGO2 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO03 3.4900 Rabbit bean bag toy
RGANO1 4.9900 Raggedy Ann

BRO1 5.9900 8 inch teddy bear
BRO2 8.9900 12 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO3 11.9900 18 inch teddy bear

It is important to understand that when you are sorting by multiple columns, the sort
sequence is exactly as specified. In other words, using the output in the example
above, the products are sorted by the prod_name column only when multiple rows
have the same prod_price value. If all the values in the prod_price column had
been unique, no data would have been sorted by prod_name.

28 LESSON 3: Sorting Retrieved Data

Sorting by Column Position

In addition to being able to specify sort order using column names, ORDER BY also
supports ordering specified by relative column position. The best way to understand
this is to look at an example:

input v

SELECT prod_id, prod_price, prod name
FROM Products
ORDER BY 2, 3;

Output v

prod_id prod_price prod_name

BNBGO02 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO3 3.4900 Rabbit bean bag toy
RGANO1 4.9900 Raggedy Ann

BRO1 5.9900 8 inch teddy bear
BRO2 8.9900 12 inch teddy bear
RYLO1 9.4900 King doll

RYLO0O2 9.4900 Queen doll

BRO3 11.9900 18 inch teddy bear

Analysis v

As you can see, the output is identical to that of the query above. The difference here
is in the ORDER BY clause. Instead of specifying column names, you specify the rela-
tive positions of selected columns in the SELECT list. ORDER BY 2 means sort by the
second column in the SELECT list, the prod_price column. ORDER BY 2, 3 means
sort by prod_price and then by prod_name.

The primary advantage of this technique is that it saves retyping the column names.
But there are some downsides too. First, not explicitly listing column names increases
the likelihood of you mistakenly specifying the wrong column. Second, it is all too
easy to mistakenly reorder data when making changes to the serecT list (forgetting to
make the corresponding changes to the oORDER BY clause). And finally, obviously you
cannot use this technique when sorting by columns that are not in the SELECT list.

TIP: Sorting by Nonselected Columns

This technique cannot be used when sorting by columns that do not appear
in the sELECT list. However, you can mix and match actual column names and
relative column positions in a single statement if needed.

Specifying Sort Direction 29

Specifying Sort Direction

Data sorting is not limited to ascending sort orders (from a to z). Although this is the
default sort order, the ORDER BY clause can also be used to sort in descending order
(from z to a). To sort by descending order, you must specify the keyword DESC.

The following example sorts the products by price in descending order (most
expensive first):

SELECT prod_id, prod_price, prod_name
FROM Products
ORDER BY prod price DESC;

Output v

prod id prod_price prod_name

BRO3 11.9900 18 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO2 8.9900 12 inch teddy bear
BRO1 5.99200 8 inch teddy bear
RGANO1 4.9900 Raggedy Ann

BNBGO1 3.4900 Fish bean bag toy
BNBGO02 3.4900 Bird bean bag toy
BNBGO3 3.4900 Rabbit bean bag toy

But what if you were to sort by multiple columns? The following example sorts the
products in descending order (most expensive first), plus product name:

input v

SELECT prod_id, prod_price, prod_name
FROM Products
ORDER BY prod price DESC, prod name;

Output v

prod_id prod_price prod_name

BRO3 11.9900 18 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO2 8.9900 12 inch teddy bear
BRO1 5.9900 8 inch teddy bear
RGANO1 4.9900 Raggedy Ann

BNBGO2 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO3 3.4900 Rabbit bean bag toy

30 LESSON 3: Sorting Retrieved Data

Analysis L

The pesc keyword only applles to the column name that directly precedes it. In the
example above, DEsC was specified for the prod_price column, but not for the
prod_name column. Therefore, the prod_price column is sorted in descending
order, but the prod_name column (within each price) is still sorted in standard
ascending order.

CAUTION: Sorting Descending on Multiple Columns

if you want to sort descending on multiple columns, be sure each column has
its own DESC keyword.

It is worth noting that DESC is short for DESCENDING, and both keywords may be

used. The opposite of DESC is Asc (or ASCENDING), which may be specified to sort in
ascending order. In practice, however, asc is not usually used because ascending order
is the default sequence (and is assumed if neither Asc nor DESC is specified).

TIP: Case Sensitivity and Sort Orders

When you are sorting textual data, is A the same as a? And does a come before
B or after z? These are not theoretical questions, and the answers depend on
how the database is set up. :

In dictionary sort order, a is treated the same as a, and that is the default
behavior for most DBMSs. However, most good DBMSs enable database
administrators to change this behavior if needed, (If your database contains lots |
of foreign language characters, this might become necessary.)

The key here is that, if you do need an alternate sort order, you may not be able
to accomplish this with a simple orRDER BY clause. You may need to contact ‘
your database administrator.

Summary

In this lesson, you learned how to sort retrieved data using the SELECT statement’s
ORDER BY clause. This clause, which must be the last in the SELECT statement, can be
used to sort data on one or more columns as needed.

Challenges 31

Challenges

1. Write a SQL statement to retrieve all customer names (cust_names) from
the customers table, and display the results sorted from z to a.

2. Write a SQL statement to retrieve customer ID (cust_id) and order number
(order_num) from the orders table, and sort the results first by customer ID
and then by order date in reverse chronological order.

3. Our fictitious store obviously prefers to sell more expensive items, and
lots of them. Write a SQL statement to display the quantity and price
(item_price) from the OrderItems table, sorted with the highest quantity
and highest price first,

4. What is wrong with the following SQL statement? (Try to figure it out
without running it):

SELECT vend name,
FROM Vendors
ORDER vend_name DESC;

Filtering Data

In this lesson, you will learn how to use the SELECT statement’s WHERE clause to
specify search conditions.

Using the wHERE Clause

Database tables usually contain large amounts of data, and you seldom need to
retrieve all the rows in a table. More often than not you’ll want to extract a subset of
the table’s data as needed for specific operations or reports. Retrieving just the data
you want involves specifying search criteria, also known as a filter condition.

Within a SELECT statement, data is filtered by specifying search criteria in the WHERE
clause. The wHERE clause is specified right after the table name (the FrRoM clause) as
follows:

input v

SELECT prod_name, prod price
FROM Products
WHERE prod_price = 3.49;

Analysis v

This statement retrieves two columns from the products table, but instead of return-
ing all rows, only rows with a prod_price value of 3.49 are returned, as follows:

Output v

prod_name prod_price
Fish bean bag toy 3.49

Bird bean bag toy 3.49

Rabbit bean bag toy 3.49

34 LESSON 4: Filtering Data

This example uses a simple equality test: It checks to see if a column has a specified
value, and it filters the data accordingly. But SQL lets you do more than just test for
equality.

TIP: How Many Zeros?

As you try the examples in this lesson, you may see results displayed as 3.49,
3.490, 3.4900, and so on. This behavior tends to be somewhat DBMS specific,

| as it is tied to the datatypes used and their default behavior. So, if your output
is a little different from mine; don’t sweat it; after all, 3 .49 and 3.4900 are
mathematically identical anyway.

TIP: SQL Versus Application Filtering :

Data can also be filtered at the client application level, not in the DBMS but
by whatever tool or application retrieves the data from the DBMS. To do this,
the SQL seLECT statement retrieves more data than is actually required for the
client application, and the client code loops through the returned data to extract
just the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized

to perform filtering quickly and efficiently. Making the client application (or
development language) do the database’s job will dramatically impact applica-
tion performance and will create applications that cannot scale properly. In
addition, if data is filtered at the client, the server has to send unneeded data
across the network connections, resulting in a waste of network bandwidth
usage.

CAUTION: weERE Clause Position

“When using both orRDER BY and WHERE clauses, make sure that ORD BBy |
comes after the wagrE. Otherwise, an error will be generated (Se Le so
“Sorting Retrieved Data,” for more information on usmg ORDER BY

The weHERE Clause Operators

The first wHERE clause we looked at tests for equality—determining if a column
contains a specific value. SQL supports a whole range of conditional operators as
listed in Table 4.1.

The wHERE Clause Operators

TABLE 4.1 _WHERE Clause Operators

35

Operator Description

= Equality

<> Nonequality

I= Nonequality

< Less than

<= Less than or equal to

l< Not less than

> Greater than

>= Greater than or equal to
> Not greater than
BETWEEN Between two specified values
IS NULL Is a NULL value

CAUTION: Operator Compatibility

Some of the operators listed in Table 4.1 are redundant; for example, <> is the
same as !=. !< (not less than) accomplishes the same effect as »= (greater
than or equal to). Not all of these operators are supported by all DBMSs. Refer
to your DBMS documentation to determine exactly what it supports.

Checking Against a Single Value

We have already seen an example of testing for equality. Let’s take a look at a few
examples to demonstrate the use of other operators.

This first example lists all products that cost less than $10:

_!Pput v

SELECT prod_name, prod_price
FROM Products
WHERE prod price < 10;

36 LESSON 4: Filtering Data

Output v

prod _name prod_price
Fish bean bag toy 3.49

Bird bean bag toy 3.49
Rabbit bean bag toy 3.49

8 inch teddy bear 5.99

12 inch teddy bear 8.99
Raggedy Ann 4.99

King doll 9.49

Queen doll 9.49

This next statement retrieves all products costing $10 or less (although the result will
be the same as in the previous example because there are no items with a price of
exactly $10):

Y

SELECT prod_name, prod price
FROM Products
WHERE prod_price <= 10;

Checking for Nonmatches

This next example lists all products not made by vendor DLLO1:

input v

SELECT wvend did, prod name
FROM Products
WHERE vend id <> 'DLLO1';

Output v

vend id prod_name

BRSO1 8 inch teddy bear
BRSO1 12 inch teddy bear
BRSO1 18 inch teddy bear
FNGO1 King doll

FNGO1 Queen doll

The WHERE Clause Operators 37

TIP: When to Use Quotes

If you look closely at the conditions used in the above WHERE clauses, you will
notice that some values are enclosed within single quotes, and others are not.
The single quotes are used to delimit a string. If you are comparing a value
against a column that is a string datatype, the delimiting quotes are required.
Quotes are not used to delimit values used with numeric columns.

The following is the same example, except that this one uses the ! = operator instead
of <>:

R

SELECT vend_id, prod_name
FROM Products
WHERE vend_id != 'DLLO1';

CAUTION: 1= or <>?

Usually, you can use = and <> interchangeably. However, not all DBMSs
support both forms of the nonequality operator. If in doubt, consult your DBMS
documentation.

Checking for a Range of Values

To check for a range of values, you can use the BETWEEN operator. Its syntax is a
little different from other WHERE clause operators because it requires two values: the
beginning and end of the range. The BETWEEN operator can be used, for example, to
check for all products that cost between $5 and $10 or for all dates that fall between
specified start and end dates.

The following example demonstrates the use of the BETWEEN operator by retrieving all
products with a price between $5 and $10:

INpAE ¥

SELECT prod_name, prod price
FROM Products
WHERE prod_price BETWEEN 5 AND 10;

38 LESSON 4: Filtering Data

Output v

prod_name prod_price
8 inch teddy bear 5.99

12 inch teddy bear 8.99

King deoll 9.49

Queen doll 9.49

Analysis v

As seen in this example, when BETWEEN is used, two values must be specified—the
low end and high end of the desired range. The two values must also be separated by
the aND keyword. BETWEEN matches all the values in the range, including the specified
start and end values.

Checking for No Value

When a table is created, the table designer can specify whether or not individual
columns can contain no value. When a column contains no value, it is said to contain
a NULL value.

~ NEW TERM: NULL
No value, as opposed to a field containing o, or an empty string, or justspaGeS

To determine if a value is NULL, you cannot simply check to see if = NULL. Instead,
the SELECT statement has a special wHERE clause that you can use to check for
columns with NULL values—the 1s NULL clause. The syntax looks like this:

input v

SELECT prod_name
FROM Products
WHERE prod_price I8 NULL;

This statement returns a list of all products that have no price (an empty
prod_price field, not a price of 0), and because there are none, no data is returned.
The customers table, however, does contain columns with NuLL values—the
cust_email column will contain NULL if a customer has no email address on file:

input v

SELECT cust_name
FROM Customersg
WHERE cust_email IS NULL;

Summary 39

Dutpe ¥

cust_name

Kids Place
The Toy 8tore

TIP: DBMS-Specific Operators

Many DBMSs extend the standard set of operators, providing advanced filtering
options, Refer to your DBMS documentation for more information.

CAUTION: nunnL and Nonmatches

You might expect that when you filter to select all rows that do not have a
particular value, rows with a NurL will be returned. But they will not. NULL is
strange this way, and rows with NULL in the filter column are not returned when
filtering for matches or when filtering for nonmatches.

Summary

In this lesson, you learned how to filter returned data using the SELECT statement’s
WHERE clause. You learned how to test for equality, nonequality, greater than and less
than, and value ranges, as well as for NULL values.

LESSON 4: Filtering Data

Challenges

1. Write a SQL statement to retrieve the product ID (prod_id) and name

(prod_name) from the Products table, returning only products with a price
of 9.49.

. Write a SQL statement to retrieve the product ID (prod_id) and name
(prod_name) from the Products table, returning only products with a price
of 9 or more.

. Now let’s combine Lessons 3 and 4. Write a SQL statement that retrieves the
unique list of order numbers (order num) from the orderItems table, which
contain 100 or more of any item.

. One more. Write a SQL statement that returns the product name (prod_name)
and price (prod_price) from Products for all products priced between 3
and 6. Oh, and sort the results by price. (There are multiple solutions to this
one, and we’ll revisit it in the next lesson, but you can solve it using what
you’ve learned thus far.)

LESSON 5
Advanced Data Filtering

In this lesson, you’ll learn how to combine WHERE clauses to create powerful and
sophisticated search conditions. You’ll also learn how to use the NOT and IN
operators.

Combining wHERE Clauses

All the wHERE clauses introduced in Lesson 4, “Filtering Data,” filter data using a
single criterion. For a greater degree of filter control, SQL lets you specify multiple
WHERE clauses. These clauses may be used in two ways: as AND clauses or as OR
clauses.

NEW TERM: Operator
A special keyword used to join or change clauses within a wHERE clause. Also
known as logical operators.

Using the anp Operator

To filter by more than one column, you use the aND operator to append conditions to
your WHERE clause. The following code demonstrates this:

input v

SELECT prod_id, prod price, prod _name
FROM Products
WHERE vend_id = 'DLLO1' AND prod_price <= 4;

Analysis v

The above SQL statement retrieves the product name and price for all products made
by vendor pLLO01 as long as the price is $4 or less. The wHERE clause in this SELECT
statement is made up of two conditions, and the keyword AND is used to join them.
AND instructs the database management system software to return only rows that meet
all the conditions specified. If a product is made by vendor pL.L01, but it costs more

42 LESSON 5: Advanced Data Filtering

than $4, it is not retrieved. Similarly, products that cost less than $4 that are made by
a vendor other than the one specified are not to be retrieved. The output generated by
this SQL statement is as follows:

Output v

prod_id prod_price prod_name

BNBGO02 3.4900 Bird bean bag toy

BNBGO1 3.4900 Fish bean bag toy

BNBGO3 3.4900 Rabbit bean bag toy
NEW TERM: anD

A keyword used in a WHERE clause to specify that only rows matching all the
specified conditions should be: retrieved.

The example just used contained a single AND clause and was thus made up of two
filter conditions. Additional filter conditions could be used as well, each separated by
an AND keyword.

NOTE: No ORDER BY Clause Spécified
 In the interests of savmg space (and your typmg), | g nitte

rows. should always match the:r order may not Of course, feel free to add an
ORDER BY clause if you'd like; it needs to go after the WHERE clause.

Using the or Operator

The oR operator is exactly the opposite of aND. The Or operator instructs the database
management system software to retrieve rows that match either condition. In fact,
most of the better DBMSs will not even evaluate the second condition in an OR WHERE
clause if the first condition has already been met. (If the first condition was met, the
row would be retricved regardless of the sccond condition.)

Look at the following SELECT statement:

Input v

SELECT prod_id, prod_price, prod _name
FROM Products
WHERE vend_id = 'DLLO1' OR vend_id = 'BRS01';

Combining WHERE Clauses 43

Analysis v B

The above SQL statement retrieves the product name and price for any products
made by either of the two specified vendors. The or operator tells the DBMS to
match either condition, not both. If an aND operator were used here, no data would be
returned (as it would create a wHERE clause that would match no rows). The output
generated by this SQL statement is as follows:

Output v

prod_name prod_price
Fish bean bag toy 3.4900
Bird bean bag toy 3.4900
Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

18 inch teddy bear 11,9900
Raggedy Ann 4.9900

NEW TERM: or
A keyword used in a wHERE clause to specify that any rows matching either of
the specified conditions should be retrieved.

Understanding Order of Evaluation

WHERE clauses can contain any number of AND and OR operators. Combining the two
enables you to perform sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. To demonstrate
this, look at an example. You need a list of all products costing $10 or more made by
vendors prL.o1 and BRSo1. The following SELECT statement uses a combination of AND
and OR operators to build a wHERE clause:

Inpqs v

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLLO1' OR vend id = 'BRSO1'
AND prod_price »= 10;

44 LESSON 5: Advanced Data Filtering

Output v

prod_name prod_price
Fish bean bag toy 3.4900
Bird bean bag toy 3.4900
Rabbit bean bag toy 3.45900

18 inch teddy bear = 11.9900
Raggedy Ann 4.9900

Analysis Vv

Look at the results above. Four of the rows returned have prices less than $10—so,
obviously, the rows were not filtered as intended. Why did this happen? The answer is
the order of evaluation. SQL (like most languages) processes AND operators before or
operators. When SQL sees the above WHERE clause, it reads any products costing $10
or more made by vendor BRS01, and any products made by vendor DLL01 regardless
of price. In other words, because AND ranks higher in the order of evaluation, the
wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related operators.
Take a look at the following SELECT statement and output:

input v

SELECT prod _name, prod price
FROM Products

WHERE (vend id = 'DLLO1" OR vend id = 'BRS01')
AND prod price >= 10;

Output v

prod_name prod_price

18 inch teddy bear 11.9900

Analysis v

The only difference between this SELECT statement and the earlier one is that, in this
statement, the first two WHERE clause conditions are enclosed within parentheses. As
parentheses have a higher order of evaluation than either AND or OR operators, the
DBMS first filters the Or condition within those parentheses. The SQL statement then
becomes any products made by either vendor DLLO01 or vendor BRS01 costing $10 or
greater, which is exactly what we want.

Using the IN Operator 45

TIP: Using Parentheses in wHERE Clauses

Whenever you write WHERE clauses that use both AND and or operators, use
parentheses to explicitly group operators. Don’t ever rely on the defauit evalu-
ation order, even if it is exactly what you want. There is no downside to using
parentheses, and you are always better off eliminating any ambiguity.

Using the 1N Operator

The 1N operator is used to specify a range of conditions, any of which can be matched.
IN takes a comma-delimited list of valid values, all enclosed within parentheses. The
following example demonstrates this:

gt v

SELECT prod_name, prod price

FROM Products

WHERE vend_id IN ('DLLO1', 'BRSO1')
ORDER BY prod_name;

Output v

prod_name prod_price
12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900
Fish bean bag toy 3.4900
Rabbit bean bag toy 3.4900
Raggedy Ann 4.9200

ﬁnalysis v

The sELECT statement retrieves all products made by vendor brLo1 and vendor BRSO1.
The 1N operator is followed by a comma-delimited list of valid values, and the entire
list must be enclosed within parentheses.

If you are thinking that the 1§ operator accomplishes the same goal as OR, you are right.
The following SQL statement accomplishes the exact same thing as the example above:

input v

SELECT prod_name, prod price

FROM Products

WHERE vend_id = 'DLLO1' OR vend_id = 'BRSO1’
ORDER BY prod_name;

46 LESSON 5: Advanced Data Filtering

Output v

prod_name prod_price
12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900
Bird bean bag toy 3.4900
Figh bean bag toy 3.4900
Rabbit bean bag toy 3.4900
Raggedy Ann 4.9900

Why use the In operator? The advantages are

» When you are working with long lists of valid options, the IN operator
syntax is far cleaner and easier to read.

» The order of evaluation is easier to manage when 1IN is used in conjunction
with other AND and OR operators.

» 1N operators almost always execute more quickly than lists of or operators
(although you’ll not see any performance difference with very short lists like
the ones we’re using here).

» The biggest advantage of IN is that the IN operator can contain another
SELECT statement, enabling you to build highly dynamic WHERE clauses.
You’ll look at this in detail in Lesson 11, “Working with Subqueries.”

NEW TERM: N :
A keyword used in a wHERE clause to specify a list of values to be matched
using an Or comparison.

Using the NoT Operator

The WHERE clause’s NOT operator has one function and one function only: NOT negates
whatever condition comes next. Because NOT is never used by itself (it is always used
in conjunction with some other operator), its syntax is a little different from all other
operators. Unlike other operators, the NOT keyword can be used before the column to
filter on, not just after it.

,NEW‘ TERM: NoT
A keyword used in a WHERE clause to negate a condition.

Using the NoT Operator 47

The following example demonstrates the use of NoT. To list the products made by all
vendors except vendor DLL01, you can write the following:

input v

SELECT prod_name

FROM Products

WHERE NOT vend_id = 'DLLOL'
ORDER BY prod_name;

Output v

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear N
King doll

Queen doll

Analysis v

The NoT here negates the condition that follows it; so instead of matching vend_id to
DLLO1, the DBMS matches vend_id to anything that is not DLLO1.

The preceding example also could have been accomplished using the <> operator, as
follows:

input v

SELECT prod_name

FROM Products

WHERE vend_id <> 'DLLOL’
ORDER BY prod_name;

Output v

prod_name
12 inch teddy bear
18 inch teddy bear
8 inch teddy bear
King doll
Queen doll

48 LESSON 5: Advanced Data Filtering

Analysis v

Why use noT? Well, for simple wHERE clauses such as the ones shown here, there
really is no advantage to using NOT. NOT is useful in more complex clauses. For exam-
ple, using NOT in conjunction with an IN operator makes it simple to find all rows that
do not match a list of criteria.

NOTE: noT in MariaDB

MariaDB supports the use of NOT 10 negate IN, BETWEEN, and EXISTS clauses.
This is different from most DBMSs that allow NoT to be used to negate any
conditions.

Summary

This lesson picked up where the last lesson left off and taught you how to combine
WHERE clauses with the AND and OR operators. You also learned how to explicitly
manage the order of evaluation and how to use the 1N and NOT operators.

Challenges 49

Challenges

1. Write a SQL statement to retrieve the vendor name (vend_name) from the
Vendors table, returning only vendors in California (this requires filtering
by both country [usa] and state [ca]; after all, there could be a California
outside of the USA). Here’s a hint: the filter requires matching strings.

2. Write a SQL statement to find all orders where at least 100 of items
BRO1, BRO2, Oor BR03 were ordered. You’ll want to return order number
(order_num), product ID (prod_id), and quantity for the orderItems table,
filtering by both the product ID and quantity. Here’s a hint: depending on
how you write your filter, you may need to pay special attention to order
of evaluation.

3. Now let’s revisit a challenge from the previous lesson. Write a SQL statement
that returns the product name (prod_name) and price (prod_price) from
products for all products priced between 3 and 6. Use an aAND, and sort the
results by price.

4. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

SELECT vend_name

FROM Vendors

ORDER BY wvend_name

WHERE vend country = 'USA' AND vend_state = 'CA';

In this lesson, you’ll learn what wildcards are, how they are used, and how to perform
wildcard searches using the LIKE operator for sophisticated filtering of retrieved data.

Using the LIKE Operator

All the previous operators we studied filter against known values. Be it matching one
or more values, testing for greater-than or less-than known values, or checking a range
of values, the common denominator is that the values used in the filtering are known.

But filtering data that way does not always work. For example, how could you search
for all products that contained the text bean bag within the product name? That cannot
be done with simple comparison operators; that’s a job for wildcard searching. Using
wildcards, you can create search patterns that can be compared against your data. In
this example, if you want to find all products that contain the words bean bag, you can
construct a wildcard search pattern enabling you to find that bean bag text anywhere
within a product name.

<V Wildeards
Special characters used to match parts of a value.

SWTERV: Search pattern
A search condition made up of literal text, wildcard characters, or any combina-
tion of the above.

The wildcards themselves are actually characters that have special meanings within
SQL wrERE clauses, and SQL supports several different wildcard types.

To use wildcards in search clauses, you must use the LIKE operator. LIKE instructs
the DBMS that the following search pattern is to be compared using a wildcard match
rather than a straight equality match.

52 LESSON 6: Using Wildcard Filtering

Predicate

When is an operator not an operator? When it is a “predicate.” Technically, LIKE
is a predicate, not an operator. The end result is the same. Just be aware of
this term in case you run across it in SQL documentation or manuals.

Wildcard searching can only be used with text fields (strings); you can’t use wildcards
to search fields of nontext datatypes.

The Percent Sign (%) Wildcard

The most frequently used wildcard is the percent sign (%). Within a search string,
% means match any number of occurrences of any character. For example, to find all
products that start with the word Fish, you can issue the following SELECT statement:

input

SELECT prod_id, prod_name
FROM Products
WHERE prod name LIKE 'Fish%’;

Output v

prod id prod_name

BNBGO1 Fish bean bag toy
Analysis ¥

This example uses a search pattern of ' Fish%'. When this clause is evaluated, any
value that starts with Fish will be retrieved. The % tells the DBMS to accept any
characters after the word Fish, regardless of how many characters there are.

Case Sensitivity

Depending on our DBMS and how it is configured, searches may be case
sensitive, in which case 'fish%' would not match Fish bean bag toy.

Wildcards can be used anywhere within the search pattern, and multiple wildcards
may be used as well. The following example uses two wildcards, one at either end of
the pattern:

SELECT prod_id, prod_name

Using the LIKE Operator

53

FROM Products
WHERE prod name LIKE '$bean bag%';

Output

prod_id prod_name

BNBGO1 Fish bean bag toy
BNBGO02 Bird bean bag toy
BNBGO3 Rabbit bean bag toy
Analysis

The search pattern 'sbean bag$' means match any value that contains the text bean

bag anywhere within it, regardless of any characters before or after that text.

Wildcards can also be used in the middle of a search pattern, although that is rarely

useful. The following example finds all products that begin with an r and end with a y.

SELECT prod_name
FROM Products
WHERE prod_name LIKE 'F%y';

1. Searching for Partial Email Addresses

There is one situation in which wildcards may indeed be useful in the middle
of a search pattern, and that is looking for email addresses based on a partial
address, such as WHERE email 'LIKE b%@forta.com'.

It is important to note that, in addition to matching one or more characters, % also
matches zero characters. % represents zero, one, or more characters at the specified

location in the search pattern.

54 LESSON 6: Using Wildcard Filtering

'L Watch for Trailing Spaces

Some DBMSs pad field contents with spaces. For example, if a column expects
50 characters and the text stored is Fish bean bag toy (17 characters),

33 spaces may be appended to the text so as to fully fill the column. This
padding usually has no real impact on data and how it is used, but it could
negatively affect the just-used SQL statement. The clause WHERE prod name
LIKE 'Fsy' will only match prod_name if it starts with F and ends with v, and
if the value is padded with spaces, then it will not end with y and so Fish bean |
bag toy will not be retrieved. One simple solution to this problem is to append
a second % to the search pattern. 'Fsy3%' will also match characters (or spaces) -
after the y. A better solution would be to trim the spaces using functions, as
you will learn in Lesson 8, “Using Data Manipulation Functions.”

UM Watceh for NULL
It may seem that the % wildcard matches anything, but there is one exception:
' NULL. Not'even the clause WHERE prod name LIKE '%' will match a row with
the value NULL as the product name.

The Underscore () Wildcard

Another useful wildcard is the underscore (). The underscore is used just like %,
but instead of matching multiple characters, the underscore matches just a single
character.

.01 DB2 Wildcards e
| The _ wildcard is not supported by DB2,

Take a look at this example:

input v

SELECT prod_id, prod_name
FROM Products
WHERE prod name LIKE '__ inch teddy bear';

JOTE: Watch for Trailing Spaces

As in the previous example, you may have 1o append a wildcard to the pattern
for this example to work.

Using the LIKE Operator 55

BRO2 12 inch teddy bear
BRO3 18 inch teddy bear

The search pattern used in this wHERE clause specified two wildcards followed by
literal text. The results shown are the only rows that match the search pattern: the
underscore matches 12 in the first row and 18 in the second row. The 8 inch teddy
bear product did not match because the search pattern required two wildcard matches,
not one. By contrast, the following SELECT statement uses the $ wildcard and returns
three matching products:

B

18 H B
L]

SELECT prod_id, prod_name
FROM Products
WHERE prod name LIKE '% inch teddy bear';

prod_name

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear

Unlike %, which can match zero characters, _always matches one character—no more
and no less.

The Brackets ([1) Wildcard

The brackets (11) wildcard is used to specify a set of characters, any one of which
must match a character in the specified position (the location of the wildcard).

NOTE SQts Are Not éommonly Supported _

Unlike the wildcards described thus far, the use of [] to create sets is not
supported by all DBMSs. Sets are supported in Microsoft SQL Server, but are
‘not supported in MySQL, Oracle, DB2, and SQLite. Consult your DBMS documen-
tation to determine if sets are supported.

56 LESSON 6: Using Wildcard Filtering

For example, to find all contacts whose names begin with the letter J or the letter M,
you can do the following:

B w

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE ' [JM]%'
ORDER BY cust_contact;

Jim Jones
John Smith
Michelle Green

slveic @
ey sSis v

The wHERE clause in this statement is ' [gM] %'. This search pattern uses two different
wildcards. The [JM] matches any contact name that begins with either of the letters
within the brackets, and it also matches only a single character. Therefore, any names
longer than one character will not match. The % wildcard after the [gM] matches any
number of characters after the first character, returning the desired results.

This wildcard can be negated by prefixing the characters with ~ (the caret character).
For example, the following matches any contact name that does not begin with the let-
ter g or the letter M (the oppesite of the previous example):

input v

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE '["JM]%'
ORDER BY cust_contact;

Of course, you can accomplish the same result using the NOT operator. The only
advantage of * is that it can simplify the syntax if you are using multiple WHERE
clauses:

Summary 57

SELECT cust_contact

FROM Customers

WHERE NOT cust_contact LIKE '[JM]%'
ORDER BY cust_contact;

Tips for Using Wildcards

As you can see, SQL’s wildcards are extremely powerful. But that power comes
with a price: wildcard searches typically take far longer to process than any other
search types discussed previously. Here are some rules to keep in mind when using
wildcards:

» Don’t overuse wildcards. If another search operator will do, use it instead.

» When you do use wildcards, try not to use them at the beginning of the
search pattern unless absolutely necessary. Search patterns that begin with
wildcards are the slowest to process.

» Pay careful attention to the placement of the wildcard symbols. If they are

misplaced, you might not return the data you intended.

Having said that, wildcards are an important and useful search tool, and one that you
will use frequently.

Summary

In this lesson, you learned what wildcards are and how to use SQL wildcards within
your WHERE clauses. You also learned that wildcards should be used carefully and
never overused.

58

LESSON 6: Using Wildcard Filtering

Challenges

1.

Write a SQL statement to retrieve the product name (prod_name) and
description (prod_desc) from the Products table, returning only products
where the word toy is in the description.

Now let’s flip things around. Write a SQL statement to retrieve the product
name (prod_name) and description (prod_desc) from the Products

table, returning only products where the word toy doesn’t appear in the
description. And this time, sort the results by product name.

Write a SQL statement to retrieve the product name (prod_name) and
description (prod_desc) from the Products table, returning only products
where both the words toy and carrots appear in the description. There are
a couple of ways to do this, but for this challenge use AND and two LIKE
comparisons.

This next one is a little trickier. I didn’t show you this syntax specifically, but
see whether you can figure it out anyway based on what you have learned
thus far. Write a SQL statement to retrieve the product name (prod_name)
and description (prod_desc) from the Products table, returning only
products where both the words toy and carrots appear in the description in
that order (the word toy before the word carrots). Here’s a hint: you’ll only
need one LIKE with three $ symbols to do this.

In this lesson, you will learn what calculated fields are, how to create them, and how
to use aliases to refer to them from within your application.

Understanding Calculated Fields

Data stored within a database’s tables is often not available in the exact format needed
by your applications. Here are some examples:

» You need to display a field containing the name of a company along with the
company’s location, but that information is stored in separate table columns.

» City, state, and ZIP codes are stored in separate columns (as they should be),
but your mailing label printing program needs them retrieved as one
correctly formatted field.

» Column data is in mixed upper- and lowercase, and your report needs all
data presented in uppercase.

» AnorderItems table stores item price and quantity, but not the expanded
price (price multiplied by quantity) of each item. To print invoices, you need
that expanded price.

» You need total, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your
application needs. Rather than retrieve the data as it is and then reformat it within your
client application or report, what you really want is to retrieve converted, calculated,
or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns that we have retrieved
in the lessons thus far, calculated fields don’t actually exist in database tables. Rather,
a calculated field is created on-the-fly within a SQL SELECT statement.

60 LESSON 7: Creating Calculated Fields

Wi Field
Essentially means the same thing as column and often used interchangeably,
although database columns are typically called columns and the term fields is
usually used in conjunction with calculated fields.

It is important to note that only the database knows which columns in a SELECT state-
ment are actual table columns and which are calculated fields. From the perspective
of a client (for example, your application), a calculated field’s data is returned in the
same way as data from any other column.

Client Versus Server Formatting

Many of the conversions and reformatting that can be performed within SQL
statements can also be performed directly in your client application. However, as
a rule, it is far quicker to perform these operations on the database server than

it is to perform them within the client.

Concatenating Fields

To demonstrate working with calculated fields, let’s start with a simple example—
creating a title that is made up of two columns.

The vendors table contains vendor name and address information. Imagine that
you are generating a vendor report and need to list the vendor location as part of the
vendor name, in the format name (location).

The report wants a single value, and the data in the table is stored in two columns:
vend_name and vend_country. In addition, you need to surround vend_country
with parentheses, and those are definitely not stored in the database table. The SELECT
statement that returns the vendor names and locations is simple enough, but how
would you create this combined value?

.. Concatenate

Joining values together (by appending them to each other) to form a single long
value:

The solution is to concatenate the two columns. In SQL SELECT statements, you
can concatenate columns using a special operator. Depending on what DBMS you
are using, this operator can be a plus sign (+) or two pipes (| |). And in the case of
MySQL and MariaDB, a special function must be used as seen below.

Concatenating Fields

61

+or ||?

NA L

SQL Server uses + for concatenation. DB2, Oracle; PostgreSQL, and SQLite
support | |. Refer to your DBMS documentation for more details.

Here’s an example using the plus sign:

SELECT vend_name + '(' + vend country + ')'
FROM Vendors
ORDER BY vend namc;

Output v

Bear Emporium (usa)
Bears R Us (Uusa)
Doll House Inc. (Usa)
Fun and Games (England)
Furball Inc. (Usa)
Jouets et ours (France)

The following is the same statement, but using the | | syntax:

input v

SELECT vend_name || '(' || vend country || ')'
FROM Vendors
ORDER BY vend_name;

Output

Bear Emporium (USA)
Bears R Us (usa)
Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (usa)
Jouets et ours (France)

And here’s what you’ll need to do if using MySQL or MariaDB:

input v

SELECT Concat (vend_name, ' (', vend country, ')')
FROM Vendors
ORDER BY wvend_name;

62 LESSON 7: Creating Calculated Fields

Analysis v

The above SELECT statements concatenate the following elements:
» The name stored in the vend_name column
» A string containing a space and an open parenthesis
» The country stored in the vend_country column

» A string containing the close parenthesis

As you can see in the output shown above, the SELECT statement returns a single
column (a calculated field) containing all these four elements as one unit.

Look again at the output returned by the SELECT statement. The two columns

that are incorporated into the calculated field are padded with spaces. Many data-

bases (although not all) save text values padded to the column width, so your own
results may indeed not contain those extraneous spaces. To return the data format-
ted properly, you must trim those padded spaces. This can be done using the SQL
RTRIM () function, as follows:

Input -

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend country) + ')'
FROM Vendors
ORDER BY vend name;

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

The following is the same statement, but using the | | syntax:

Input ¥

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')’
FROM Vendors
ORDER BY vend name;

Concatenating Fields 63

e v o o o o e e e T e e e e e e mm mm e e o e mm e em e e e e e e e e e

Bear Emporium (USA)
Bears R Us (USA)

Doll Housge Inc. (USA)
Fun and @Games (England)
Furball Inc. (USA)
Jouets et ours (France)

Analysis ¥

The rRTRIM () function trims all space from the right of a value. When you use
RTRIM (), the individual columns are all trimmed properly.

N 1L The TRIM Functions

Most DBMSs support RTRIM() (which, as just seen, trims the right side of a
string), as well as LTRIM (), which trims the left side of a string, and TRIM(),
which trims both the right and left.

Using Aliases

The sELECT statement used to concatenate the address field works well, as seen in the
above output. But what is the name of this new calculated column? Well, the truth is,
it has no name; it is simply a value. Although this can be fine if you are just looking
at the results in a SQL query tool, an unnamed column cannot be used within a client
application because there is no way for the client to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an alternate
name for a field or value. Aliases are assigned with the as keyword. Take a look at the
following SELECT statement:

input v

SELECT RTRIM(vend name) + ' (' + RTRIM(vend country) + ')'
AS vend_title

FROM Vendors

ORDER BY vend_name;

64 LESSON 7: Creating Calculated Fields

OQutputv ===

vend title

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

The following is the same statement, but using the | | syntax:

|nput v

SELECT RTRIM(vend name) || ' (' || RTRIM(vend country) || ')
AS vend_title

FROM Vendors

ORDER BY wvend name;

And here is the equivalent for use with MySQL and MariaDB:

lnputzw

SELECT Con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>