
Ben Forta
EDITION

FUtt cotoR
Now with challenge
questions to gauge

and improve
proficiency.

FIFTH

SamsTeachYourself

Ben Forta

SamsTeachYourself

I

F¡fth Edition

slns 22tRive'¡r Street, Hoboken, NJ 07030

sams Teach Yourself sQL ln 10 Mlnutes, Flfth Edltlon
Copyright @ 2O2O by Pearson Education, lnc.
All rights reserved. This publication is protected by copyright, and permiss¡on
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechan¡cal, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropr¡ate contacts with¡n
the Pearson Education Global Rlghts & Permissions Department, please visit
lvww.pearson.com/permissions/. No patent liability is assumed with respect
to the use ofthe information contained herein. Although every precaution has
been taken ¡n the preparation of this book, the publ¡sher and author assume
no responsibility for errors or om¡ssions. Nor is any liabllity assumed for
damages resultlng from the use of the ¡nformation contained here¡n.

ISBN-13: 978'0-13-518279-6
I SBN-10 : O-t3-57827 9-4
L¡brary of Congress Control Number: 2019910840

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publish¡ng cannot attest
to the accuracy of this information. Use of a term ¡n th¡s þook should not be
regarded as affecting the validity of any trademark or service mark.

warnlng and Dlsclalmer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an "as is" basis. The author and the publisher shall have neither l¡aþ¡lity
nor responsibility to any person or entity w¡th respect to any loss or damages
aris¡ng from the ¡nformation contained in this book.

speclal Sales
For informat¡on about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outs¡de the U.S,, please contact
intlcs@pearson.com.
Cover cred¡t micMeam/Shutterstock

Editor-inChlef
Mark Taub

Acquisitions
Edltor
Kim Spenceley

Development
Edltor
Mark Taber

Managing Editor
Sandra Schroeder

Prolect Edltor
Mandie Frank

Copy Editor
Chuck Hutchinson

lndexer
Tim Wright

Proofreadef
Abigail Manheim

Techn¡cal Ed¡tor
Benjamin Schupak

Designer
Chuti Prasertsith

Composltor
codeMantra

Gontents at a Glance

lntroductíon

l- Understanding SQL

2 Retrieving Data

3 Sorting Retrieved Data

4 Filtering Data

5 Advanced Data Filtering

6 Usíng Wildcard Filtering

7 Creatíng Calculated Fields

8 Using Data Manipulation Functions

9 Summarizing Data

10 GroupinÊl Data

11 Workíng w¡th Subqueries

12 Joining Tables

l-3 Creating Advanced Joins

l-4 Combining Queries

15 lnserting Data

16 Updating and Deleting Data

17 Creating and Manipulating Tables

l-8 Using Views

l-9 Working with Stored Procedures

20 Managing Transaction Processing

21 Using Cursors

22 Understanding Advanced SQL Features

t
5

13

25
33
4L
51

59

69
79

89
99

to7
tt7
L27

r_35

1,45

L51
16L

L7t
L79
l.87

193

IV Sams Teach Yourself SQL in 10 M¡nutes, Fifth Edition

Appendix A. Sample Table Scripts

Appenclix ß. SQL Statement Syntax

Appendix C. Using SQL Datatypes

Appendix D. SQL Reserved Words

lndex

203
2û9

2L5
22t
227

Table of Gontents

lntroduction
Who ls the Teach Yourself SQL Book For?

DBMSs Covered in This Book.. ..

Conventions Used in This Book

1 Understanding SQL
Database Basics.

What ls SQL?

Try lt Yourself

Summary.

2 Retrieving Data
The sur,scr Statement.

Retrieving lndividual Columns.

Retrieving Multiple Columns

Retrieving All Columns . .,

Retrieving Distinct Rows

Limíting Results

Us¡ng Comments ,

Summary

Challenges

3 Sorting Retrieved Data
Sorting Data

Sorting þy Multiple Columns

Sorting by Column Position

Speciûing Sort Direction

Summary

Challenges

4 Filtering Data
Using the wEens Clause ,

The wrsRs Clause Operators.

Summary

Challenges

5
5

10
10
a2

13
13
1-4

16
L7
L7

19
2t
22
23

28
25
27
28
29
30
3t

33
33
34
39
40

vt Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

5 Advanced Data Filtering
Combining w¡¡ens Clauses.

Using the rm Operator

Using the Nor Operator.

Summary

Challenges

6 Using Wildcard FilterËng
Using the r,rrr Operator .

Tips for Using Wildcards

Summary ,

Challenges

7 Creating Calculated Fields
UnderstandingCalculated Fields ..

Concatenating Fields

Performing Mathematical Calculations

Summary

Challenges

I Uslng Data Manipulation Functions
Understanding Functions

Using Functions

Summary

Challenges

9 Summarizing Data
using Aggregate Functions .. .

Aggregates on Distinct Values

Combining Aggregate Functions

Summary

Challenges

10 Grouplng Data
Understanding Data Grouping

Creating Groups

Filtering Groups

E4

51
57
57
58

59
59
60
65
67
68

Table of Contents

Grouping and Sorting

sErJEcr Clause Ordering

Summary,

Challenges

11 Working with Subqueries
Understanding Subqueries

Filtering by Subquery

Using Subqueries as Calculated Fields

Summary

Challenges

12 .loining Tables
Understanding Joins

Creating a Join

Summary .

Challenges

13 Creating Advanced Joins
Using Table Aliases

Using Different Join ïypes
Using Joins with Aggregate Functions

Using Joins and Join Conditions .

Summary

Challenges

14 Combining Queries
Understanding Combined Queries
Creating Combined Queries
Summary

Challenges

15 lnserting Data
Understanding Data lnsertion . .

Copying from One Table to Another

Summary .

Challenges ,

vii

94
96
96
97

99
99
99

103
105
106

10?
LO7

109
Lt5
tL6

LL?
LL7
1_L8

t23
L24
t25
L26

L27
L27
L27
133
134

135
135
1_41_

L42
t43

(

viii Sams Teach Yourself SQL in 10 Minutes, F¡fth Edition

16 Updatlng and Deleting Data
Updating Data

Deleting Data

Guidelines for Updating and Delet¡ng Data

Summary

Challenges

L7 Greating and Man¡pulatlng Tables
Creating Tables

Updating Tables

Deleting Tables

Renaming Tables

Summary

Challenges

18 !.Jsing Views
Understanding Views

Creating V¡ews

Summary

Challenges

19 Working with Stored Procedures
Understanding Stored Procedures

Understanding Why to Use Stored Procedures

Executing Stored Procedures..

Creating Stored Procedures

Summary

2O Managlng Transactlon Processing
Understanding Transact¡on Processing

Control ling Transactions

Summary

21 Uslng Gursors
Understanding Cursors

Working with Cursors

Summary

L45
1-45

t47
L49
L49
150

151
L5t
155
t57
158
158
159

fBi"
161
L64
169
L70

L7L
17!
L72
L73
L74
774

L79
L79
L8L
185

L87
1'87

188
L92

ïaþle of Contents

22 Understand¡ng Advanced SQL Featuree
Understanding Constraints

Understanding lndexes

Understanding Triggers

Database Security

Summary

A Sample Table Scrlpts
Understanding the Sample Tables

Obtaining the Sample Taþles ...

B SQL Statement Syntax
A],TER TABLE.,.,..,.

coMMrT. ,

CREATE INÐEX,..,..,
CREATE PROCEDURE..

CREATE TÀBIE. .. .,,
CREATE VTEW.. ...

DEI,ETE.,

DROP ,

INSERT

INSERT SELECT. .. .,

ROLLBACK

SELECT,.

UPDATE. ...

G Using SQL Datatypes
String Datatypes

Numeric Datatypes .

Date and Time Datatypes

Binary Datatypes

D SQL Reserved Words

tx

193
193
198
200
202
202

203
203
207

209
209
209
2lo
2LO

2to
2LL
21"1

21-L

2tt
2L2
2L2
212
213

{

(

215
2L6
2L7
2t8
2L9

22L

(,

lndex 227

About the Author
Ben Forta is Adobe's Senior Director of Education Initiatives and has three decades

of experience in tlte computer industry in product development, support, training, and
product marketing. He is the author of the best-selling Sams TþachYourself SQL in
10 Minutes (including spinoff titles on MariaDB, MySQL, SQL Server T-SQL, and
Oracle PLISQL), Leørning Regular Expresslorzs, as well as books on Java, Windows,
and more. He has extensive experience in database design and development, has

implemented databases for several highly successful commercial software programs
and websites, and is a frequent lecturer and columnist on application development
and Internet technologies. Ben lives in Oak Park, Michigan, with his wife, Marcy, and
their children. He welcomes your email at ben@f orta. com and invites you to visit his
website at http : / / forEa. com.

Acknowledgfments
Thanks to the team at Sams for all these years of support, dedication, and encourage-
ment. Over the past two decades, we've created 40+ books togetheg but this little
volume is my favorite by far, and I thank you for giving me the creative freedom to
evolve it as I see fit.

Thank you to Amazon.com reviewers who suggested the inclusion of the Challenges,
which are new to this fifth edition.

Thanks f,o fhe many thounands of you who provided feeclhack on the first four
editions of this book. Fortunately, most of it was positive, and all of it was appreci-
ated. The enhancements and changes in this edition are a direct response to your
feedback, which I continue to welcome.

Thanks to the dozens of colleges and universities that have made this book pat of
thefu IT and computer science curriculums. Being included and trusted by professors
and teachers this way is immensely rewarding and equally humbling.

And finally, thanks to the almost half-million of you who bought the previous
editions (and spinoffs) of this book, making it not just my best-selling title, but also
the best-selling book on the subject. Your continued support is the highest compliment
an author can ever be paid.

-Ben Forta

i

We Want to Hear from You!

As the reader of this book, you arc our most important critic and commentator. We
value your opinion and want to know what we're doing right, what we could do better,
what areas you'd like to see us publish in, and any other words of wisdom you're
willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn't like about this book-as well as what we can do to make our books better.

Please note that we cannot help you with technícal problems related to the topic of
this book.

When you write, please be sure to include this book's title and author as well as your
name and email address. We will carefuþ review your comments and share them with
the author and editors who worked on the book.

Email: community@informit.com

Reader Services
Register your copy of Sams Teach Yourself SQL in I0 Minutes a Day at informit.com
for convenient acçess to downloads, updates, and corrections as they become available.
To start the registration process, go to informit.com/register and log in or create an
accountx. Enter the product ISBN, 9780135182'196, and click Submit. Once the pro-
cess is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive
exclusive discounts on future editions of this product.

lntroduction

SQL is the most widely used database language. Whether you are an application
developer, database administrator, web application designer, mobile app developer,
or a user of popular data reporting tools, a good working knowledge of SQL is an
important part of interacting with databases.

This book was born out of necessity. I had been teaching Web application
developrttertt lor several years, arrtl sLutlents wcre corrstantly asking for SQL book
recommendations. There are lots of SQL books out there. Some are actually very
good. But they all have one thing in common: for most users they teach just too
much information. Instead of teaching SQL itself, most books teach everything from
database design and normalization to relational database theory and administrative
çonce¡ns. And while those are all important topics, they are not of interest to most of
us who just need to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I turned that
classroom experience into the book you are holding. Sams Teach Yourself SQL in
I0 Minutes will teach you SQL you need to know, starting with simple data retrieval
and working on to more complex topics including the use of joins, subqueries, stored
procedures, cursors, triggers, and table constraints. You'll learn methodically, system-
atically, and simply-in lessons that will each take l0 minutes or less to complete.

Now in its fifth edition, this book has taught SQL to almost a half million English-
speaking users, and has been translated into over adozen other languages too so as to
help users the world over.

New to this edition is the inclusion of lesson-specific challenges at the end of each
lesson 2 - 18. They provide a chance for you to take the SQL you have leamed and
apply it to different scenarios and problems. The answers to each are not in the book,
but, don't worry, you can fi,nd them on the book web page at
}:1;lp : / / f.orla. com/books / 0L35L827 94,

Now it is your turn. Tum to Lesson 1, and get to work. You'll be writing world-class
SQL in no time at all.

Who ls the Teach Yourse¡f SQL
Book For?
This book is for you if

Þ You are new to SQL.

Þ You want to quickly learn how to get the most out of SQL.

2 Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

> You want to learn how to use SQL in your own application development.

Þ You want to be productive quickly and easily in SQL without having to call
someone for help.

DBMSs Govered in This Book
For the most part, the SQL taught in this book will apply to any Database Management
System (DBMS). However, as all SQL implementations are not created equal, the
following DBMSs are explicitly covered (and specific instructions or notes are included
where needed):

> IBM DB2 (including DB2 in the cloud)

Þ Microsoft SQL Server (including Microsoft SQL Server Express)

> MariaDB

> MySQL

) Oracle (including Oracle Express)

> PostgreSQl

> SQLite

Example databases (or SQL scripts to create the example databases) are available
for all of these DBMSs on the book web page at
hEEp : / / forEa. com/books / 0]-35]-82794 .

Gonventions Used in This Book
This book uses different typefaces to differentiate between code and regular English,
and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in
monospace type.

Tt wí11- look like thís to mimic the l^ray text looks on your screen.

The text that makes up programming code has no color. But most tools used to create
and edit code (in all programming languages, including SQL) do display code in
color. The reason for doing so is that this makes it easier to read long code sequences,

lntroduct¡on

and it also helps spot typos and errors (when colors don't match or look right you
know something is wrong). The SQL code throughout this book is printed in color
with different colors used for SQL statements, clauses, strings, numbers, comments,
and so on. Just be aware that there is no standard way to color code and ditferent tools
use different color schemes, so the colors you see in your own editor while trying the
examples may not exactly match what's in the book.

This arrow (*) at the beginning of a line of code means that a single line of code is
too long to fit on the printed page. Continue typing all the characters after the * as

though they were part of the preceding line.

NOTE:

A Note presents intere$ting pieces of information related to the surrounding
discussion.

TIP:

A Tip offers advice or teaches an easier way to do something.

CAUTION:

A Caution advises you about potential problems and helps you steer clear of
disaster.

PLAIN ENGLISH:

New Term icons provide clear definitions of new, essential terms

lnput v
The Input icon identifies code that you can type in. It usually appears next to a listing.

Output v
The Output icon highlights the output produced by running a program. It usually
appe¿ìrs after a listing.

Analysis v

ð

The Analysis icon alerts you to the author's line-by-line analysis of a program.

Understanding SQt

In this lesson, you'll learn exactly what SQL is and what it will do for you.

Database Basics
The fact that you are reading a book on SQL indicates that you, somehow, need to
interact with databases. SQL is a language used to dojust this, so before looking at
SQL itself, it is important that you understand some basic concepts about databases
and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you
select a contact on your phone or a name from your email address book, you are using
a database. If you conduct a Google search, you are using a database. When you
log in to your network at work, you are validating your name and password against
a database. Even when you use your ATM card at a cash machine, you are using
databases for PIN verification and balance checking.

But even though we all use databases all the time, there remains much confusion
over what exactly a database is. This is especially true because different people use
the same database terms to mean different things. Therefore, a good place to start our
study is with a list and explanation of the most important database terms.

ri::ì' Rev'ew-nÉi Basic Goncepts
What follows is a very brÍef overview of some basic dataþase concepts. lt is
intended to either jolt your memory if you already have some database experi-
ence, or to provide you with the absolute basics if you are new to databases.
Understanding databases is an important part of mastering SQL, and you might
want to find a good book on database fundamentals to brush up on the subject
if needed.

Databases
The term database is used in many different ways, but for our purposes (and indeed,
from SQL's perspective) a database is a collection of data stored in some organized
fashion. The símplest way to think of it is to imagine a database as a filing cabinet.

i:..J:GS\ì¡¡;Èii l-ì Understand¡ng SQL

The filing cabinet is simply a physical location to store data, regardless of what that
data is or how it is organized.

Database
A container (usually a file or set of files) to store organized data.

: Misuse Gauses Confusion
People often use the term database to refer to the database software they are
running. This is incorrect and a source of much confusion. Database software
is actually called the Database Management System (or DBMS). The database
is the conta¡ner created and manipulated via the DBMS, and exactly what the
dataþase is and what form it takes vary from one database to the next.

Tables
When you store information in your filing cabinet, you don't just toss it in a drawer
Rather, you create files within the filing cabinet, and then you file related data in
specific files.

In the database world, that file is called a table. A table is a structured file that can
store data of a specific type. A table might contain a list of customers, a product
catalog, or any other list of information.

: Table
A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one list. You
would never store a list of customers and a list of orders in the same database table.
Doing so would make subsequent retrieval and access difficult. Rather, you'd create
two tables, one for each list.

Every table in a database has a name that identifies it. That name is always
unique-meaning no other table in that database can have the same name.

r, ' Table Names
What makes a table name unique is actually a combination of several things
including the database name and table name. Some databases also use the
name of the database owner as part of the unique name. This means that while
you cannot use the same table name twice in the same database, you definitely
ean reuse table names in different databases.

Database Basics

Tables have characteristics and properties that define how data is stored in them.
These include information about what data may be stored, how it is broken up, how
individual pieces of information are named, and much more. This set of information
that describes a table is known as a schema, and schemas are used to describe specific
tables within a database, as well as entire databases (and the relationship between
tables in them, if any).

Schema
lnformation aþout database and taþle layout and properties

Golumns and Datatypes
Tables are made up of columns. A column contains a particular piece of information
within a table.

': ,,r¡ rt.:'l i GOlUmn

A single field in a table. All tables are made up of one or more columns.

The best way to understand this is to envision database tables as grids, somewhat like
spreadsheets. Each column in the grid contains a particular piece of information. In
a customer table, for example, one column contains the customer number, another
contains the customer name, and the address, city, state, andZIP code are all stored in
their own columns.

', Breakint Up Data
It is extremely important to breâk data into multiple columns correctly, For
example, city, state, and ZlP (or postal) code should always be sepârate col-
umns. When you break these out, ¡t becomes possible to sort or filter data by
specific columns (for example, to f¡nd all customers in a pafticular state or in
a particular city), lf city and state are combined into one column, it would be
extremely difficult to sort or filter by state.
When you break up data, the level of granulärity is up to you and your specific
requirements. For example, addresses are typically stored with the house num-
ber and street name together. This is fine, unless you might one day need to
sort data by street name, ¡n which case splitting house number and street name
would be preferable.

Each column in a database has an associated datatype. A datatype defines what type
of data the column can contain. For example, if the column were to contain a number
(perhaps the number of items in an order), the datatype would be a numeric datatype.

7

8 É H5S$l\¡ á: Understanding SQL

If the column were to contain dates, text, notes, currency amounts, and so on, the
appropriate datafype would be used to specify this.

,.. i ,;ì1 ¡ ¡:,:; ,¡r Datatype
A type of allowed data. Every table column has an assoc¡ated datatype that
restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for example,
preventing the entry of alphabetical characters into a numeric field). Datatypes also
help sort data correctly and play an important role in optimizing disk usage. As such,
special attention must be given to picking the right datatype when tables are created.

i,'.: : r'.jr,. Datatype Gompatibility
Datatypes and their names are one of the primary sources of SQL incompatibil-
ity. While most bas¡c datatypes are supported consistently, many more advanced
datatypes are not. And worse, occasionally you'll find that the same datatype is
referred to by different names in different DBMSS. There is not much you can do
about this, but it is important to keep ¡n mind when you create table schemas.

Rows
Data in a table is stored in rows; each record saved is stored in its own row. Again,
envisioning a table as a spreadsheet sfyle grid, the vertical columns in the grid are the
table columns, and the horizontal rows are the table rows.

Fbr example, a customers table might store one customer per row. 'I'he number of
rows in the table is the number of records in it.

:. r:;1,1 i!::irli,t ROW

A record in a table

rrir.":l:: Recorc¡s or Rows?
You may hear users refer to database records when referring to rows. For the
most part the two terms are used interchangeably, but row is technically the
correct term.

Database Basics

Primary Keys
Every row in a table should have some column (or set of columns) that uniquely
identifies it. A table containing customers might use a customer number column for
this purpose, whereas a table containing orders might use the order ID. An employee
list table might use an employee ID. A table containing a list of books might use the
ISBN for this purpose.

IrillW-iì:ft ¡lI Pdmaty key
A column (or set of colurnns) whose values uniquely identifr every row in a table.

This column (or set of columns) that uniquely identifies each row in a table is called
a primøry key. The primary key is used to refer to a specific row. Without a primary
key, updating or deleting specific rows in a table becomes exffemely difficult as there
is no guaranteed safe way to refer tojust the rows to be affected.

l-i:r: Ahyays Define PrimaÌy Keys
Although primary keys are not actually required, most database designers
ensure that every table they create has a primary key so that futuré data
manipulation is possible and manageable.

Any column in a table can be defined as the primary key, as long as it meets the
following conditions:

Þ No two rows can have the same primary key value.

> Every row must have a value in the primary key column(s). (So, no rur,r,
values.)

Þ Values in primary key columns should never be modified or updated.

> Primary key values should never be reused. (Ifa row is deleted from the
table, its primary key may not be assigned to any new rows in the future.)

Primary keys are usually defined on a single column within a table. But this is not
required, and multiple columns may be used together as a primary key. When multiple
columns are used, the rules listed above must apply to all columns, and the values
of all columns together must be unique (individual columns need not have unique
values).

There is another very important type ofkey called a foreign key, but I'll get to that
later on in Lesson 12, "Joining Tables."

9

10 LçSS@Fè S.: Understanding SQL

lllfhat ls SQt?
SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for Structured
Query Language. SQL is a language designed specifically for communicating with
databases.

Unlike other languages (spoken languages like English, or programming languages
like Java, C, or Python), SQL is made up of very few words. This is deliberate. SQL
is designed to do one thing and do it well-provide you with a simple and efficient
way to read and write data from a database.

Vy'hat are the advantages of SQL?

> SQL is not a proprietary language used by specific database vendors. Almost
every major DBMS supports SQL, so learning this one language will enable
you to interact with just about every database you'll run into.

> SQL is easy to leam. The statements are all made up of descriptive English
words, and there aren't that many of them.

> Despite its apparent simplicity, SQL is a very powerful language, and by
clevedy using and combining its language elements, you can perform very
complex and sophisticated database operations.

And with that, let's learn SQL.

Try It Yourself
As with any language, the best way to learn SQL is to try it for yourself. To do this,
you'll need a database and an application with which to test your SQL statements.

SQL Extensions
Many DBMS vendors have extended their support for SQL by adding statements
or insiructions to the language, The pu¡pose of thqse extengi-ong !F.tg proyide
additional functionality or simplified ways to perform speeific operations. And
while often extreme¡y useful, these extensions tend to be very DBMS specific,
and they are rarely supported by more than a single vendor.

Standard SQL is governed by the ANSI standards committee, and is thus called
ANSI SQL. All major DBMSs, even those with their own extensions, support
ANSI SQL. lndividual implementations have their own names (PL-SQL, used by
Oracle; Transact-SQl, used lry Microsoft SQL Server; and so on).

For the most part, the SQL taught in this book is ANSI SQL. On the odd
occasion where DBM$specific SQL is used, it is so noted.

Try lt Yourself 1t

All of the lessons in this book use real SQL statements and real database tables, and
you should have access to a DBMS to follow along.

I Whlch DBMS Should You Use?
You need access to a DBMS to follow along. But which should you use?
The good news is that the SQL you'll learn in this book is relevant to every
major DBMS. As such, your choice of DBMS should primarily be based on
convenience and simpllcity.
There are basically two ways to proceed. You can install a DBMS (and support-
ing client software) on your own computer; this will give you the greatest access
ancl control. BLrt for many, the trickiest paft of getting started learning SQL is
actually getting a DBMS installed and configured. The alternative is to access
a remote (or cloud-based) DBMS; this way you have nothing to manage and
install.
You have lots of opt¡ons if you decide to install your own DBMS. Here are a
couple of suggest¡ons:

> MySQL (or its spin-off MariaDB) is a really good choice in that it is free,
supported on every major operating system, is easy to install, and is one
of the most popular DBMSs in use. MySQL comes with a commandline
tool for actually entering your SQL, but you are better using the optional
MySQL Workbeneh, so download that, too (it's usually a separate install).

> Windows users may want to use Microsoft SQL Seruer Express. This free
version of the popular and powerful SQL Server includes a user-friendly
client named SQL Server Management Studio.

The alternative is to use a remote (or cloud-based) DBMS:

> lf you are learning SQL to use at work, your employer may have a DBMS
that you can use. lf this is an opt¡on, you'll l¡kely be given your own
DBMS login and a tool to use to connect to the DBMS to enter and test
your SQL.

> Cloud-based DBMSs are instances of DBMSs running on virtual servers,
effectively giving you the benefits of your own DBMS without having to
actually install one locâlly. All of the major cloud service vendors (includ-
ing Google, Amazon, and Microsoft) offer DBMSS in the cloud. Unfor-
tunately, at the time of this book's writing, setting these up (including
configuring secure remote access) isn't trivial and is often more work than
installing your own DBMS locally. The exceptions are Oracle's Live SQL
and IBM's Db2 on Cloud, which offer a free version that includes a web
interface. Just type your SQL in the web browser, and you're good to go.

You'll find links to all the options mentioned here on the book's web page, and
as DBMS options evolve that page w¡ll be updated with tips and suggestions.

t2 LESSON 1: Understanding SQL

Once you have access toaDBMS, Appendix A, 'lSample Table Scripts,'l explains
what the example tables are and provides details on how to obtain (or create) them so
that can may follow along with the instructions in each lesson.

In addition, starting in Lesson 2 you'llfind Challengeç after the "Summaryo' section.
They present you with the opportunity to take your newly acquired SQL knowledge
and apply it to solve problems not explicitly mentioned in the lessons. To veri$ your
solutions (or if you get sfuck and need some help), visit the book's web page.

Summary
In this first lesson, you learned what SQL is and why it is useful. Because SQL is used
to interact with databases, you also reviewed some basic database terminology.

't*¡

rieving ÐataetR

In this lesson, you'll learn how to use the all-important sELEcr statement to retrieve
one or more columns of data from a table.

The sELEer Statement
As explained in Lesson 1, "Understanding SQL," SQL statements are made up of
plain English terms. These terms are called keywords, and every SQL statement is
made up of one or more keywords. The SQL statement that you'll probably use most
frequently is the ser,ncr statement. Its purpose is to retrieve information from one or
more tables.

¡!!,w I railÍ¡: Ke!¡rYord
A reserved word that is part of the SQL language. Never name a table or column
using a keyword. Append¡x D, "SQL Reserved Words," lists some of the more
common reserved words.

To use sELEcr to retrieve table data, you must, at a minimum, specify two pieces of
information-what you want to select and from where you want to select it.

i\i.);i::; Follow¡ng Atong with the Examples
The sample SQL statements (and sample output) throughout the lessons in this
book use a set of data files that are described in Appendix A, "Sample Table
Scripts." lf youl like to follow along and try the examples yourself (l strongly
recommend that you do so), refer to Appendix A, which contains instructions on
how to download or create these data files.

"i'll.r: Uso the Right Database
DBMSs allow you to work with multiple databases (the filing cabinet in the analogy
in Lesson 1). When you installed the sample tables (as per Appendix A), you were
advised to install them in a new database. lf you did so, make sure you select that
database before proceeding,just as you d¡d when you created and populated the
sample tables. As you work through these lessons, if you encounter errors about
unknown tables, then you most l¡kely are in the wrong database.

L4 r-Ëgåü$€ c: Retrieving Data

Retrieving lndividual Golumns
We'll start with a simple SQL snlrcr statement,.as follows:

lnput ,e

SEITECT prod_name
FROM Producls;

Analysis ç'

The previous statement uses the sELEcr statement to retrieve a single column called
prod_name from the products table. The desired column name is specified right
after the sELEcr keyword, and the rnou keyword specifies the name of the table from
which to retrieve the data. The output from this statement is shown in the following:

Output v
prod_name

Fish bean bag toy
Bird bean bag Eoy
Rabbit bean bag toy
8 inch teddy bear
l-2 inch Leddy bear
l-8 inch teddy bear
Raggedy Ann
King do11
Queen do1l

Depending on the DBMS and client you are using, you may also see a message telling
you how many rows were retrieved and the processing time. For example, the MySQL
command line would display something like this:

9 rows in set (0.0L sec)

. ; Unsorted Data
lf you tried this query yourself, you m¡ght have discovered that the data was
displayed in a different order than shown here. lf this is the case, don't
worry-it is working exactly as it is supposed to. lf query results âre not
explicitly sorted (we'll get to that in the next lesson), then data will be returned
in no order of any significance. lt may be the order in which the data was added
to the table, but it may not. As long as your query returned the same number of
rows, then it is working.

Retrieving lnd¡v¡dual Columns

A simple SELECT statement similar to the one used above returns all the rows in a

table. Data is not filtered (so as to retrieve a subset of the results), nor is it sorted.
We'll discuss these topics in the next few lessons.

i lP: Terminating Statements
Multiple SQL statements must be separated by semicolons (the ; character).
Most DBMSs do not require that a semicolon be specified after single state-
ments. But if your particular DBMS complains, you might have to add it there.
Of course, you can always add a semicolon if you wish. lt'll do no harm, even if
it is, in fact, not needed.

t\.rt-)'ì-[: $QL Statement and Gase
It is important to note that SQL statements are not case sensitive, so sELEcr is
the same as selecr, which is the same as setecr. Many SQL developers find
that us¡ng uppercase for all SQL keywords and lowercase for column and table
names makes code easier to read and debug. However, be aware that while the
SQL language is case-insensitive, the names of tables, columns, and values
may not be (that depends on your DBMS and how it is configured).

"i-!ir: Use of White Space
All extra white space within a SQL statement is ignored when that statement is
processed. SQL statements can be specified on one long line or broken up over
many lines. So, the following three statements are functionally identical:
SELECT prod_name
FROM Products;

SELECT prod_name FROM Products;

SELECT
prod_name
FROM

Productg,
Most SQL developers find that breaking up statements over mult¡ple lines
makes them easier to read and debug.

15

Retrieving Multiple Golumns

LESSOru 2: Retr¡eving Data

To retrieve multiple columns from a table, the same sELEcr statement is used. The
only difference is that multiple column names must be specified after the sELEcr
keyword, and each column must be separated by a comma.

TIP: Take Gare with Gommas
When selecting multiple columns, be sure to specify a comma between each col-
umn name, but not after the last column name. Doing so will generate an error.

The following sELEcr statement retrieves three columns from the products table:

input-a=
SELECT prod_id, prod name, prod3rice
FROM Product.s;

Analysis w

Just as in the prior example, this statement uses the SELECT statement to retrieve data
from the products table. In this example, three column names are specified, each
separated by a comma. The output from this statement is shown below:

Output w
prod_id prod name prodSrice

BNBGOl-
BNBGO2
BNBGO3
BROl
BRO2
BRO3
RGANOl
RYLOl"
RYLO2

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag Èoy
I inch teddy bear
l-2 inch teddy bear
l-8 inch teddy bear
Raggedy Ann
King do1l
Queen dool

3.49
3.49
3.49
5 .99
8.99

LL.99
4.99
9.49
9 .49

NOTÊ: Presentation of Data
SQL statements typically return raq unformatted data, and different DBMSs
and clients may display the data differently (with different alignment or decimal
places, for example). Data formatting is a presentation issue, not a retrieval
issue. Therefore, presentation is typically specified in the application that dis-
plays the data. Actual retrieved data (without application-provided formatting) is
rarely used.

Retriev¡ng D¡st¡nct Rows t7

Retrieving All Golumns
In addition to being able to specify desired columns (one or more, as seen above),
snr,Ecr statements can also,request all columns without having to list them individu-
ally. This is done using the asterisk (*) wildcard character in lieu of actual column
names, as follows:

lnput v
SELECT *
FROM Producls;

Analysis v
Vy'hen a wildcard (*) is specified, all the columns in the table are returned. The column
order will typically, but not always, be the physical order in which the columns appear
in the table definition. However, SQL data is seldom displayed as is. (Usually, it is
retumed to an application that formats or presents the data as needed). As such, this
should not pose a problem.

CAUï|ON: Us¡ng W¡ldca¡ds
As a rule,.you are better off not using the n wildcard unless you really do need
every column in the table. Even though use of wildcards may save you the time
and effort needed to list the desired columns explicitly, retrieving unneces-
sary columns usually slows down the performance of your retrieval and your
application.

TIP: Retrieving Unknown Golumns
There is one big advantage to using wildcards. As you do not explicitly specify
column names (because the aster¡sk retrieves every column), it is possible to
retrieve columns whose names are unknown.

Retrievingl Distinct Rows
As you have seen, snr,Ecr returns all matched rows. But what if you do not want
every occurence of every value? For example, suppose you want the vendor ID of all
vendors with products in your products tâble:

lnput v
SELECT vend_id
FROM Products;

18 LESSON 2: Retrieving Data

1..

vend_id

BRS0L
BRSOl
BRSOl
DLLOl
DLLOl
DLLO]-
DIrL01
FNGOl
FNGO].

The ssr,scr statement returned nine rows (even though there are only three unique
vendors in that list) because there are nine products listed in the products table. So
how could you retrieve a list of distinct values?

The solution is to use the orstrNct keyword, which, as its name implies, instructs the
database to only return distinct values.

lnput v
SELECT DISTINCT vend_íd
FROM Products;

Analyels v
sELEcr DrsrrNcr vend_id tells the DBMS to only retum distinct (unique) vend_id
rows, and so only three rows are retumed, as seen in the following output. If used, the
öî'gt¡itiðf l(ëi\i'öril'ffTriffrc'iTläöëö'aTrëötlyäî 'ftõ'út'öf'nië ðömffiri'íñäffiëß."

Output v
vend_id

BRSOl
DTJLO].
FNGO].

1).,

l)

.),!

:t

!

Limiting Results

Limiting Results
sEr,Ecr statements return all matched rows, possibly every row in the specified table.
What if you want to retum just the fust row or a set number of rows? This is doable,
but unfortunately, this is one of those situations where all SQL implementations are
not created equal.

In Microsoft SQL Server you can use the ron keyword to limit the top number of
entries, as $een here:

lnput v
SELECT TOP 5 prod_name
FROM Products;

Output v
prod_name

I inch tçddy bear
L2 inch teddy bear
18 incb teddy bear
Fish bear¡ bag toy
Bird bean bag toy

Analyeis v
The previous statement uses the sELEcr rop 5 statement to retrieve just the first
five rows.

If you are using DB2, well, then you get to use SQL unique to that DBMS, like this:

lnput v
SELECT prod_name
FROM Products
FETCH FTRST 5 ROWS ONI,Y;

Analysis v
FETcn Frnsr s Rows on¡,y does exactly what it suggests.

If you are using Oracle, you need to count rows based on RowNul'l (a row number
counter) like this:

lnput v
SELECT prod_name
FROM PÏoducts
IÍHERE ROÍíNUM <=5;

19

_

(

(

20 LESSON 2: Retrieving Data

clause, as follows:

lnput v
SELECT prod_name
FROM Products
ËIMIT 5;

Analysis v
The previous statement uses the sEr,Ecr statement to retrieve a single column.
LrMrr s instructs the supported DBMSs to return no more than five rows. The ouq)ut
from this statement is shown in the following code.

To get the next five rows, specify both where to start and the number of rows to
retrieve, like this:

lnput v
SEIJECT prod_name
FROM Products
IJ?ilIT 5 OFFSET 5;

Analysis v
LrMrr s oFFsEr s instructs supported DBMSs to return five rows starting from
row s. The first number is the number of rows to retrieve, and the second is where to
starl The*o:¡lp!¡[ftom.ftrgstatement iss*ho^w¡jn-úle"followug--cpde: r).

Output v
prod_name

Rabbit bean bag toy
Raggedy Ann
KÍng dolil
Queen doll

So, ltt',rtr specifies the number of rows to retum. r,rp¡rr with an oFFsET specifies
where to start from. In our example, there are only nine products in the producrs
table, so LrMrr s oFFsET s retumedjustfourrows (as there was no fifth).

i- -.

Using Comments 2t

TIP: MySQL, MariaDB, and SQLite ShoÉcut
MySQL, MariaDB, and SQLite support a shorthand version of LrMrr 4

oFFsEr s, enabling you to combine them as LrMrr 3,4. Using this syntax,
the value before the , is the oFFSET and the value after the , ¡s the LrMrr
(yes, they are reversed, so be careful).

NOTE: Not Att SQt ls Created Equal
I included this section on limit¡ng results for one reason only-to demonstrate
that while SQL is usually quite cons¡stent across ¡mplementations, you can't
rely on ¡t always being so. While very basic statements tend to be very portable,
more complex ones tend to be less so. Keep that in mind as you search for
SQL solutions to specific problems.

Using Gomments
As you have seen, SQL statements are instructions that are processed by your DBMS
But what if you wanted to include text that you'd not want processed and executed?
V/hy would you ever want to do this? Here are a few reasons;

> The SQL statements we've been using here are all very short and very
simple. But, as your SQL statements grow (in length and complexity),
you'll want to include descriptive comments (for your own future reference
or for whoever has to work on the project next). These comments need to
be embedded in the SQL scripts, but they are obviously not intended for
actual DBMS processing. (For an example of this, see the create. sqt and
populate. sgr files used in Appendix B, "SQL Statement Syntax").

> The same is true for lireaders at the top of a SQL file (one that is saving
SQL statements perhaps for future use), usually containing a description and
notes, and perhaps even programmer contact information. (This use case is
also seen in the Appendix B . sqL files.).

> Another important use for comments is to temporarily stop SQL code from
being executed. If you were working with a long SQL statement, and wanted
to test just part of it, you could comment out some of the code so that DBMS
sees it as çomments and ignores it.

Most DBMSs support several forms of comment syntax. ìVe'll srar with inline comments:

lnput v
SELECT prod_name
FROM Products;

-- this ís a comment

22 å"frSS&Þ{ 2: Retrieving Data

Analyeis v
Comments may be embedded inline using - - (two hyphens). Any text on the same
line that is after the - - is considered comment text, making this a good opton for
describing columns in a cRrars rABr,E statement, for example.

Here is another form of inline comment (although less commonly supported):

lnput w
This is a comment
SELECT prod_name
FROM Products;

Analysis w

A # at the start of a line makes the entire line a comment. You can see this format
comment used in the accompanying create. sq1 and populate. sql scripts.

You can also create multiline comments and comments that stop and start anywhere
within the script:

lnn¡r* w

/* SELECT prod_name, vend_id
FROM ProducLs¡ */
SELECT prod_name
FROM ProducÈs;

Analysis v
/* Starts a comment, and "/ ends it. Anything between /* and n / is comment text.
This type of comment is often used to comment out code, as seen in this example.
Here, two sELEcr statements are defined, but the first won't execute because it has
been commented out.

Summary
In this lesson, you learned how to use the SQL sni,ncr statement to retrieve a single
table column, multiple table columns, and all table columns. You also leamed how to
return distinct values and how to comment your code. And unfortunately, you were
also introduced to the fact that more cornplex SQL tetds to be less portable SQL.
Next, you'll learn how to sort the retrieved data.

a'

Challenges

Ghallen$es
1. Writc a SQL statement to retrieve all customer IDs (cust_id) from the

cuseomers table.

2. The grderrtems table contains every item ordered (and some were ordered
multiple times). Write a SQL statement to retrieve a list of the products
(prod_id) ordered (not every order,just a unique list ofproducts). Here's
a hinü you should end up with seven unique rows displayed.

3. Write a SQL statement that retrieves all columns from the customers table
and an alternate snx¡Ecr that retrieves just the customer ID, tlse comments to
comment out one sELEcr so as to be able to run the other. (And, of course,
test both statements.)

23

(

(

(

I

LESSON 3

SortinÉ Retrieved Data

i

1

{

(

I

(

I

(

In this lesson, you will learn how to use the sELEcr statemcnt's oRDER By cl.ause to
sort retrieved data as needed.

Sorting Data
As you leamed in the last lesson, the following SQL statement returns a single column
from a database table. But lbok at the output. The data appears to be displayed in no
particular order at all.

lnput v
SELECT prod_name
FROM Products,

Output v
prod_name

Fish bean bag toy
Bird bean bâg coy
Rabbit bean bag toy
I inch teddy bear
12 inch Èeddy bear
18 inch teddy bear
Raggedy Ann
King doIl
Queen dolI

Actually, the retrieved data is not displayed in a mere random order. If unsorted, data
will typically be displayed in the order in which it appears in the underþing tables.
This could be the order in which the data was added to the tables initially. However,
if data was subsequently updated or deleted, the order will be affected by how the
DBMS reuses reclaimed süorage space. The end result is that you cannot (and should
not) rely on the sort order if you do not explicitly control it. Relational database

26 ¡.ESSON 3: Sorting Retrieved Data

design theory states that the sequence of retrieved data cannot be 4sslmed fo þ4ve
significance if ordering was not explicitly specified.

To explicitly sort data retrieved using a sELEcr statement, you use the oRDER By
clause. oRÐER By takes the name of one or more columns by which to sort the output.
Look at the following example:

lnput v
SELECT prod_name
FROM Products
ORÐER BY prod_name;

Analysis v
This statement is identical to the earlier statement, except it also specifies an oRDER By
clause instructing the DBMS software to sort the data by the prod_name column. The
results are as follows:

Output v
prod_name

12 inch teddy bear
18 inch teddy bear
I inch teddy bear
Bird bean bag toy
Fish bean bag toy
King do1I
Queen do11
Rabbit bean bag toy
Raggedy Ann

FROM clause,

Sort¡ng by Multiple Columns

TIP: Sort¡nÉl by Nonselected Golumns
Although more often than not the columns used in an oRDER ey clause will be
ones selected for display, this is actually not required. lt is perfectly legal to
sort data by a column that is not retrieved.

Sorting by Multiple Golumns
It is often necessary to sort data by more than one column. For example, if you are
displaying an employee list, you might want to display it sorted by last name and first
name (first by last name, and then within each last name sort by first name). This type
of sort would be useful if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas
(ust as you do when you are selecting multiple columns).

The following code retrieves three columns and sorts the results by two of them-first
by price and then by name.

lnput v
SELECT prod_id, prod3rice, prod_name
FROM Products
ORDER BY prodSrice, prod_name;

Output v
prod_id prod_price prod_name

BNBGO2
BNBGOJ.
BNBGO3
RGANOl
BRO 1
BRO2
RYLO 1
RYLO2
BRO3

3 .4900
3.4900
3.4900
4 .9900
5.9900
8 . 9900
9 .4 900
9 .4 900
t-1 .9900

Bird bean bag toy
Fish bean bag toy
Rabbit bean bag toy
Raggedy Ann
8 inch Èeddy bear
L2 inch teddy bear
King do]1
Queen dol1
18 inch teddy bear

It is important to understand that when you are sorting by multiple columns, the sort
sequence is exactly as specified. In other words, using the output in the example
above, the products are sorted by the proa_name column only when multiple rows
have the same prodjriee value. If all the values in the prod3rice column had
been unique, no data would have been sorted by prod_name.

28 LESSON 3: SortinÉ Retrieved Data

Sorting by Golumn Position
In addition to being able to specify sort order using column names, oRnsn av also
supports ordering specified by relative column position. The best way to understand
this is to look at an example:

lnput v
SELECT prod id, prod3rice, prod_name
FROM Products
ORDER BY 2, 3;

Output v
prod_id prod3rice prod name

BNBGO2
BNBGO].
BNBGO3
RGANOl.
BROl
BRO2
RYLOl
RYI,O2
BRO3

3.4900
3 .4900
3.4900
4.9900
5. 9900
8.9900
9 .4900
9 .4900
11,.9900

Bird bean bag toy
Fish bean bag toy
Rabbit bean bag t.oy
Raggedy Ann
I inch teddy bear
12 inch teddy bear
King dol1
Queen doll
L8 inch teddy bear

Analysis v
As you can see, the output is identical to that of the query above. The difference here
is in the oRDER By clause. Instead of speci$ing column names, you specify the rela-
tive positions of selected columns in the snr,nct list. onorn By 2 means sort by the
second column in the snr,scr list, the prod3rice column. oRDER By 2, 3 means
sort by prod3rice and then by prod_name.

The primary advantage of this technique is that it saves retyping the column n¿ìmes.

But there are some downsides too. First, not explicitly listing column names increases
the likelihood of you mistakenly specifying the wrong column. Second, it is all too
easy to mistakenly reorder data when making changes to the ser,Ecr list (forgetting to
make the corresponding changes to the onpnn av clause). And finally, obviously you
cannot use this technique when sorting by columns that are not in the sELEcr list.

TIP: Sortil4! by Nonselected Golumns
This technique cannot be used when sorting þy columns that do not appear
in the ssr,ucr list. However, you can mix and match actual column names and
relative column positions in a single statement if needed.

Specifling Sort Direction

18 inch teddy bear
King doI1
Queen doll
L2 inch teddy bear
I inch teddy bear
Raggedy Ann
Fish bean bag loy
Bird bean bag toy
Rabbj-t bean bag toy

L8 inch teddy bear
King doI1
Queen do11
12 inch teddy bear
I ínch teddy bear
Raggedy Ann
Bird bean bag loy
Fish bean bag toy
Rabbít bean bag toy

29

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (from a to z). Although this is the
default sort order, the oR¡sn ey clause can also be used to sort in descending order
(from z to a). To sort by descending order, you must specify the keyword ousc.

The following example sorts the products by price in descending order (most
expensive first):

lnput v
SELECT prod_íd, prod3rice, prod_name
FROM Products
ORDER BY prod3ríce DESC;

Output v
prorl id prod3rice prod_name

BRO3
RYLO].
RYI.O2
BRO2
BROl
RGANOl-
BNBGO].
BNBGO2
BNBGO3

11.9900
9.4900
9,490A
L 9900
s.9900
4.9900
3 .4900
3.4900
3.4900

Lr..9900
9.4900
9.4900
8.9900
5.9900
4.9900
3.4900
3.4900
3.4900

But what if you were fo sort by multiple columns? The following example sorts the
products in descending order (most expensive first), plus product name:

lnput v
SELECT prod_id. prod_¡>rice, prod_name
FROM Products
ORDER BY prod3rice DESC, prod name;

Output v
prod_íd prod3ríce prod_name

BRO3
RYLOl.
RYLO2
BRO2
BROl.
RGANOl.
BNBGO2
BNBGO].
BNBGO3

30 ã-frsFj$í'..å *: Sorting Retrieved Data

Analysis v
The ousc keyword only applies to the column name that directly precedes it. In the
example above, ousc was specified for the prod3rice colurtn, but not for the
prod_name column. Therefore, the prodSrice column is sorted in descending
order, but the prod_name column (within each price) is still sorted in standard
ascending order.

CAUTION: Sort¡ng Descend¡ng on Multiple Columns
lf you want to sort descending on multiple columns, be sure each column has
its own ousc keyword.

It is worth noting that ossc is short for DESCENDTNG, and both keywords may be
used. The opposite of ossc is asc (or ascuworme), which may be specified to sort in
ascending order. In practice, however, esc is not usually used because ascending order
is the default sequence (and is assumed if neither Asc nor pssc is specified).

TIP: Case Sensitivity and Sort Orders
When you are sorting textual data, is A the same as a? And does a come before
e or after z? These are not theoretical questions, and the answers depend on
how the database is set up.

ln dictionary sort order, A is treated the same âs a, and that is the default
behavior for most DBMSS. However, most good DBMSs enable database
administrators to change th¡s behavlor if needed. (lf your database contains lots
of foreign language characters, this might become necessary.)
The key here is that, if you do need an alternate sort order, you may not be able
to accomplish this with a simple oRDER By clause. You may need to contact
your database administrator.

Summary
In this lesson, you leamed how to sort retrieved data using the snr.nct statement's
oRDER By clause. This clause, which must be the last in the sslucr statement, can be

used to sort data on one or more columns as needed.

I Challenges

GhallenÍles
1. Write a SQL statement to retrieve all customer names (cust_names) from

the Customers table, and display the results sorted from z to e.

2. lVrite a SQL statement to retrieve customer ID (cust_id) and order number
(order_num) from tfie orders table, and sort the results first by customer ID
and then by order date in reverse chronological order.

3, Our fictitious store obviously prefers to sell more expensive items, and
lots of them. Write a SQL statement to display the quantity and price
(item3rice) from the orderrtems table, sorted with the highest quanfity
and highest price flrst.

4. Whaf is wrong with the following SQL statement? (Try to figure it out
witlrout running it):

SELECT vend name,
FROM Vendors
ORDER vend_name DESCT

31

(

I

{

{

i

\, .,

(-.,

I

(

1

I

t

rEssoN 4
Filtering Data

In this lesson, you will leam how 1o use the ser,Ecr statement's wnsrre, clause to
sp ec ify s e arch c onditions.

Usin¡l the !{nERE Glause
Database tables usually cor¡tain large amounts of data, and you seldom need to
retrieve all the rows in a table. More often than not you'll want to extract a subset of
the table's data as needed for specific operations or reports. Retrieving just the data
you want involves specifying search criteria, also known as afilter conditíon.

Within a sELEcr statement, data is filtered by specifying search criteria in the wHsnp
clause. The wnens clause is specified right after ttre table name (the rnou clause) as

follows:

(hput v
SELECT prod_name, prodþrice
FROM Products
üIHERE prodjrice = 3.49;

Analysia v
This statement retrieves two columns from the producÈs table, but instead of return-
ing all rows, only rows with a prod3rice value of s . ¿s are retumed, as follows:

Output v
prod_name prod3rice{

(

(,
(

[_.

Fish bean bag Èoy
Bird bean bag toy
Rabbit bean bag toy

3 .49
3.49
3.49

34 iì.¡;i,5tlå{..¡iirì +r Filtering Data

This example uses a simple equality test: It checks to see if a column has a specified
value, and it filters the data accordingly. But SQL lets you do more than just test for
equality.

TIP: How Many Zeros?
As you try the examples ¡n th¡s lesson, you may see results displayed as 3.49,
3.4s0,3.4e00, and so on. This behaviortends to be somewhât DBMS specific,
as it is tied to the datatypes used and their default behavior. So, if your output
is a little different from mine, don't sweat it; after all, ¡.eg and 3.4e00 are
mathematically identical anyway.

TIP: SQL Versus Application Faltering
Data can also be filtered at the client application level, not in the DBMS but
by whatever tool or application retrieves the data from the DBMS. To do this,
the SQL sELEcr statement retrieves more data than is actually required for the
client application, and the client code loops through the returned data to extract
just the needed rows.

As a rule, thls practice is strongly discouraged. Databases are optimized
to perform filtering quickly and efficiently. Making the client application (or
development language) do the database's job will dramatically impact applica-
tion performance and will create applications that cannot scale properly. ln
addition, if data is filtered at the client, the server has to send unneeded data
across the network connections, resulting in a waste of network bandwidth
usage.

CAUTION: wn¡ns Glause Position
When using both ono¡e ey and wsunu clauses, make sure that oRDER By
comes after the !ÍHERE. Otherwise, an error will be generated. (See Lesson 3,
"Sorting Retrieved Data," for more information on using oRDER By.)

TIr^a, r^rrîr:rrrî:r ôlarraa flna¡a*ttr.¡I Il!E- ülflf¡JlE wlql¡l-trt rVPrEirCratlrl-t
The first wr¡sRs clause we looked at tests for equality-determining if a column
contains a specific value. SQL supports a whole range of conditional operators as

listed in Table 4.1.

TABTE 4.1 WHERE Clause Operators
Operator

t-

!<

!>
BETWEEN

IS NUI,IJ

The wHERE Clause Operators

Descrlptlon

Equal¡ty
Nonequal¡ty
Nonequality
Less than
Less than or equal to
Not less than
Greater than
Greater than or equal to
Not greater than
Between two specified values
ls a rvur,r, value

35

CAUTION; Operator GOmpatlþillty
Some of the operators listed in Table 4.
same as r=, !< (not less than) accompl same

to
than

your ÐBM
equa

S
to). Not all of
documentation

these
determi

1-

operators are

for

Gheckin$ Atlainst a Single Value
Vy'e have already seen an example of testing for equality. Let's take a look at a few
examples to demonstrate the use of other operators.

This first example lists all products that cost less than $10:

lnput v
SELECT prod_name, prod3rice
FROM Products
WHERE prodjrice < 10;

36

Output v
prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
I inch Èeddy bear
L2 inch teddy bear
Raggedy Ann
King do11
Queen dol1

BRSOl
BRSOl
BRS0t
FNGO].
FNGO].

LESSON 4: Filter¡ng Data

prod3ríce

3.49
3.49
3.49
5.99
8.99
4 .99
9.49
9.49

This next statement retrieves all products costing $10 or less (although the result will
be the same as in the previous example because there are no items with a price of
exactly $10):

lnput v
SELECT prod_name, prodSrice
FROM Products
WHERE prodjtlçs a= 10;

Ghecking for Nonmatches
This next example lists all products not made by vendor DLLoI:

lnput v
SELECT ivond¡iLd¡ pæod-name,..'r,..,
FROM Products
WHERE vend id <> |DLLO1¡;

Output v
vend id prod_name

rl

8 inch teddy bear
l-2 inch tseddy bear
18 inch teddy bear
King do1l
Queen do11

The w¡rsns Clause Operators 37

TIP: When to Uee Quotes

The following is the same example, except that this one uses the r = operator instead
of.r:

lnput v
SELECT vend_id, prod_name
FROM Products
I,{HERE vend id != 'ÐLLOL';

Ghecking for a RanÉle of Values
To check for a range of values, you can use the BEI!\IEEN operator. Its syntax is a
little different from other wnenp clause operators because it requires two values: the
beginning and end of the range. The eerwsnN operator can be used, for example, to
check for all products that cost between $5 and $10 or for all dates that fall between
specified start and end dates.

The following example demonstrafes the use of the eurwesN operator by retrieving all
products with a price between $5 and $10:

lnput v
SELECT prod_name, prodþrice
FROM Products
WHERE prodjrice BETWEEN 5 AND 10;

Usúally, you êan

documentation"

uSê I

nonegua
inteichangeably. However,

support both forms the l¡ty operator, tf n doubt,
not

con your
DBMSs

DBMS

38

Output v
prod_name

8 inch teddy bear
L2 ínch teddy bear
King do1l
Oueen dol1

LËsSON 4: Filtering Data

prod3rice

5.99
8.99
9 .49
9.49

Analysis v
As seen in this example, when BETVTEEN is used, two values must be specified-the
low end and high end of the desired range. The two values must also be separated by
the e¡¡p keyword. BETwEEN matches all the values in the range, including the specified
start and end values.

Ghecking¡ for No Value
When a table is created, the table designer can specify whether or not individual
columns can contain no value. 'When a column contains no value, it is said to contain
a rull value.

To determine if a value is NilLLo you cannot simply check to see if = NULL. Instead,
the snr,ncr statement has a special wupns clause that you can use to check for
columns with wuu, values-the rs NULL clause. The syntax looks like this:

lnput v
SEI,ECT prod_name
FROM ProducÈs
WHERE prodjrice IS NUÍ,L;

This statement returns a list of all products that have no price (an empty
prod3rice field, not a price of o), and because there are none, no data is retumed.
The cusromers table, however, does contain columns with ¡rur,r, values-the
cusr email column will contain tuur,l if a customer has no email address on file:

lnput v
SELECT cust_rÌame
FROM Customers
WHERE cust email IS NULLi

NEW TERM: ¡runr.

No value, as opposed to a field containing o, or

Summary

Output v
cugt name

Kids Plaee
The Toy Etore

Summary
In this lesson, you learned how to filter returned data using the sur,ucr statement's
wHna¡ clause. You leamed how to test for equality, nonequality, greater than and less
than, and value ranges, as well as for ¡uur,r, values.

39

, Refer to you¡: ÞEMS

Opeþtors

documentation for more
operators, advanced filtêfingMany

options
DBMSs

TIP: DBlllS€peclflc'
the standard set

40 LESSON 4: Filtering Data

Ghalleng¡es
1. Write a SQL statement to retrieve the product ID þrod_id) and name

(prod_name) from the Products table, returning only products with a price
of g.+g.

2. \Vrite a SQL statement to retrieve the product ID (prod_id) and name

þrod_name) from the products table, returning only products with a price
of g or more.

3. Now let's combine Iæssons 3 and 4. Write a SQL statement that retrieves the
unique list oforder numbers (order_num) from the orderrtems table, which
contain 100 or more of any item.

4. One more. Write a SQL statement that retums the product name þrod_name)
and price þrod3ríce) from Products for all products priced between r
and e . Oh, and sort the results by price. (Ihere are multþle solutions to this
one, and we'll revisit it in the next lesson, but you can solve it using what
you've learned thus far.)

.)

ii:

I'ii.'

LESSON 5

Advanced Data Filtering

In this lesson, you'll learn how to combine w*ar.s clauses to create powerful and
sophisticated search condilions. You'll also leam how to use the Nor cnd rr¡
operators.

Gombining ürrrERE Glauses
All the w¡¡eRp clauses introduced in Lesson 4, "Filtering Data," filter data using a
single criterion. For a greater degree of filter control, SQL lets you specify multiple
w¡*¡ne clauses. These clauses may be used in two ways: as arqo clauses or as oR
clauses.

Using the e¡vo Operator
To filter by more than one column, you use the ¡r¡o operator to append conditions to
your wIIERE clause. The folliowing code demonstrates this:

lnput v
SELECT prod_id, prod3,rice. prod_name
FROM Products
VÍHERE vend íd = 'DLLo1' ANÐ prodjríce <= 4;

Analysis v
The above SQL statement retrieves the product name and price for all products made
by vendor DLLoI as long as the price is $4 or less. The wuens clause in this seLecr
statement is made up of two conditions, and the keyword ervo is used to join them.
AND instructs the database management system software to return only rows that meet
all the conditions specified. If a product is made by vendor Dr,r,or., but it costs more

Operator
clause. Also.WÏ{ERE

42 LESSON 5: Advanced Data Filtering

than $4, it is not retrieved. Similarly, products that cost less than $4 that are made by
a vendor other than the one specified are not to be retrieved. The output generated by
this SQL statement is as follows:

Output v
prod_íd prod3ríce prod_name

BNBGO2
BNBGO].
BNBGO3

3 .4900
3 .4900
3 .4900

Bird bean bag toy
Fish bean bag toy
Rabbit bean bag toy

l.

The example just used contained a single .aro clause and was thus made up of two
filter conditions. Additional filter conditions could be used as well, each separated by
an ANÐ keyword.

Using the on Operator
The on operator is exactly the opposite of a¡m. The on operator instructs the database
management system software to retrievc rows that match either condition. In fact,
most of the better DBMSs will not even evaluate the second condition in an on wirnnr
clause if the first condition has already been met. (If the first condition was met, tlte
row would bc rctricvcd rcgardlcss ofthc sccond condition.)

Look at the following ser,Ecr statement:

lnput v
SELECT prorr_íd, prod3rice, prod_name
FROM Products
WHERE vend id = 'DLL01' OR vend id = 'BRSO1|;

Combining wHsnE Clauses 43

Analysis v
The above SQL statement retrieves the product name and price for any products
made by either of the two specified vendors. The on operator tells the DBMS to
match either condition, not both. If an arp operator were used here, no data would be
retumed (as it would $eale a wuunn clause that would match no rows). The output
generated by this SQL statement is as follows:

Output v
prod_name prodSrice

Fish beaÌr bag toy
Bird bean bag toy
Rabbít bean bag toy
I inch teddy bear
12 inch teddy bear
l-8 inch teddy bear
Raggedy A.nn

3 .4900
3.4900
3 .4900
5.9900
8.9900
11,9900
4.9900

NEW TERM: on
A keyword used in a wHERE clause,to specify that any rows matching either of
the specified conditions should be retr¡eved.

Understand¡ng¡ Order of Evaluation
wHsRs clauses can contain any number of axo and oR operators. Combining the two
enables you to perform sophisticated and complex filtering.

But combining aso and oR operators presents an interesting problem. To demonstrate
this, look aÌ an example. You need a list of all products costing $10 or more made by
vendors olr,or and BRs01. The following sELEcr statement uses a combination of ¡¡¡p
and on operators to build a wHERE clause:

lnput v
SELECT prod_name, prod3rice
FROM Products
WHERE vend_id - rDLLOl-' OR vend_id =

.AND prodjri.ce >= 10,'
I BRSOl I

44

Output v
prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag loy
1"8 inch teddy bear
Raggedy Ann

LESSON 5: Advanced Data Filtering

prod3rice

3.4900
3 .4900
3.4900
11.9900
4 - 9900

Analysis v
Look at the results above. Four of the rows retumed have prices less than $10-so,
obviously, the rows were not filtered as intended. Why did this happen? The answer is
the order ofevaluafion. SQL (like most languages) processes AND operators before on
operators. When SQL sees the above wHERE clause, it reads any products costing $10
or more made by vendor øxso:-, and any products made by vendorat :lot regardless
of price. In other words, because erqo ranks higher in the order of evaluation, the
wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related operators.
Take a look at the following snr,Ecr statement and output:

lnput v
SELECT prod_name, prod3rice
FROM Products
WHERE (vend_id = 'DLL01í OR vend*Íd = 'BRS01¡)

ÃND prodjrice >= 10;

Output v
prod_name prod3rice

l-8 inch teddy bear Ll-.9900

Analysis v
The only difference between this ser,ecr statement and the earlier one is that, in this
statement, the first two wHERE clause conditions are enclosed within parentheses. As
parentheses have a higher order of evaluation than either ervo or on operators, the
DBMS first filters the oe condition within those parentheses. The SQL statement then
becomes any products made by either vendor DLL01 or vendor Bnsor costing 810 or
greater) which is exactþ what we want.

Using the ru Operator 45

TIP: Using Parentheeeg in wncns Glauses
Whenever you write WHERE clauses that use both eNp and oR operators, use
parentheses to explicitly group operators. Don't ever rely on the default evalu-
ation order, even if it is exactly what you want. There is no downside to using
parentheses, and you are always better off eliminating any ambiguity.

Using the rN Operator
The rm operator is used to speci$ a range of conditions, any of which can be matched.
rN takes a comma-delimited list of valid values, all enclosed within parentheses. The
following example demonstrates this:

lnput v
SEI,ECT prod name, prod3rice
FROM Products
WHERE vend_id IN ('DLL0L' , 'BRS01- ')

ORDER BY prod name;

Output v
prod name prod3ríce

L2 inch teddy bear
18 inch teddy bear
I inch teddy bear
Bird bean bag toy
Fish bean bag toy
Rabbit bean bag toy
Raggedy Ann

8.9900
11.9900
5.9900
3.4900
3 .4900
3 .4900
4 .9900

Analysis v
The sslsct statement retrieves all products made by vendor pr,i,or and vendor BRsor..
The rm operator is followed by a comma-delimited list of valid values, and the entire
list must be enclosed within parentheses.

ff you are thinking that the rN operator accomplishes the same goal as oR, you are right.
The following SQL sta0ement accomplishes the exact same thing as the example above:

lnput v
SELECT prod_name, prodj3rice
FROM Products
WHERE vend_id = 'ÐLL01' OR vend_id = 'BRS01'
ORDER BY prod_name;

46

Output v
prod_name

L2 inch teddy bear
18 inch teddy bear
8 inch teddy bear
Bird bean bag toy
Fish bean bag ¿oy
Rabbit bean bag toy
Raggedy Ann

LËSSSr,¡ 5: Advanced Data Filtering

prod3ríce

8.9900
l_1.9900
5.9900
3 .4900
3 .4900
3 .4900
4 .9900

Why use the rm operator? The advantages are

> When you are working with long lists of valid options, the rw operator
syntax is far cleaner and easier to read.

> The order of evaluation is easier to manage when rx is used in conjunction
with other ¡l¡o and oR operators.

> rN operators almost always execute more quickly than lists of on operators
(although you'll not see any performance difference with very short lists like
the ones we're using here).

> The biggest advantage of rN is that the rN operator can contain another
sELEcr statement, enabling you to build highly dynamic wHERE clauses.
You'll look at this in detail in Lesson 11, "Working witl Subqueries."

Using the Nor Operator
The wHnes clause's Nor operator has one function and one function only: mor negates

whatever condition comes next. Because r¡or is never used by itself (it is always used
in conjunction with some other operator), its syntax is a little different from all other
operâtors. Unlike other operators, the rot keyword can be used before the column to
filter on, not just after it.

NEW TERM: r¡.I

condition.WHERE clause to negate

Using the Nor operator

The following example demonstrates t}te use of Nor. To list the products made by all
vendors except vendor DIrLol, you can write the following:

lnput v

47

SELECT prod_name
FROM Products
WHERE NOT vend_id =
ORDER BY prod_name;

I DL],O1-,

Output v
prod_namç

L2 inch teddy bear
18 inch teddy bear
I inch teddy bear
ring do3.l,
Queen doll

Analysis v
The uor here negates the condition that follows it; so instead of matching vend_id to
Dr,r,o1, the DBMS matches vend_id to anything that is not Ðr,Loi..

The preceding example also could have been accomplished using the <> operator, as

follows:

lnput v
SELEC? prod_name
FROM Products
WHERE vend_id <> 'DLLo1¡
ORDER BY prod name;

Output v
prod_name

L2 inch t,eddy bear
L8 inch Eeddy bear
I inch teddy bear
King dolI
Queen dofl

48 LESSoN 5: Advanced Data Filtering

Analysis v
Why use ¡¡ot? lVell, for simple wuene clauses such as the ones shown here, there
really is no advantage to using Nor. Nor is useful in more complex clauses. For exam-
ple, using nor in conjunction with an rN operator makes it simple to find all rows that
do not match a list of criteria.

NOTE: uor in MariaDB
MariaDB supports the use of Nor to negate rN, BETTTEEN, and sxrsrs clauses.
This is different from most DBMSs that allow Nor to be used to negate any
conditions.

Summany
This lesson picked up where the last lesson left off and taught you how to combine
wnsRe clauses with the e¡qo and oR operators. You also leamed how to explicitþ
manage the order of evaluation and how to use the rm and uot operators.

Challenges

GhallenÉies
1. Write a SQL statement to retrieve the vendor name (vend_name) from the

vendors table, returning only vendors in California (this requires filtering
by both country [use] and state [ce]; after all, there could be a Califomia
outside of the USA). Here's a hint the filter requires matching strings.

2, Write a SQL statement to find all orders where at least 100 of items
BRoL, 8R02, or BR03 were ordered. You'll want to return order number
(order_num), product ID (prod_id), and quantity for the orderrtems table,
filtering by both the product ID and quantity. Here's a hint: depending on
how you write your filter, you may need to pay special attention to order
of evaluation.

3. Now let's revisit a challenge from the previous lesson. Vy'rite a SQL statement
that retums the product name þrod_name) and price þrod3rice) from
products for all products priced between s and e. Use an ar¡o, and sort the
results by price.

4. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

SELECT vend_name
FROM Vendors
ORDER BY vend_name
WHERE vend_country = rUSAr AND vend*sÈ¿fs = rCA¡;

49

::r i.;rii! --::' r,:!; _r .: ;i:.::r r;
ir ::i.::: . . .r r,. .:: r: r :rrr.

l

l

.t

.

l

l

l

:

l

l

l

:'l

Uslng W¡ldcard Filterlng

In this lesson, you'll leamwhat wildcards are, how they øre used, and how to perform
wildcard searches using the LIKE operator for sophisticated filtering of retríeved data.

Using the r,rKE Operator
All the previous operators we studied filter against known values. Be it matching one
or more values, testing for greater-than or less-than known values, or checking a range
of values, the common denominator is that the values used in the filtering are known.

But filtering data that way does not always work. For example, how could you search
for all products that contained the text bean bag within the product name? That cannot
be done with simple comparison operators; that's a job for wildcard searching. Using
wildcards, you can create search patterns that can be compared against your data. In
this example, if you want to find all products that contain the words beøn bag, you can
construct a wildcard search pattern enabling you to find that bean bag text anywhere
within a product name.

r ji-,,,, ji.;.,: W¡ldcatdg
Special characters used to match parts of a value.

The wildcards themselves are actually characters that have special meanings within
SQL wHrnæ clauses, and SQL supports several different wildcard types.

To use wildcards in search clauses, you must use the LIKE operator. t rKE instructs
the DBMS that the following search pattem is to be compared using a wildcard match
rather than a straight equality match.

characters, or any combina-of literal text, wildcard

Searchi!i:vv i,

52 ñ"ESS&N 6: Using Wildcard Filtering

: I i:r; : rìt1,, Pfgdieat€}
When is an operator not an operator? When it is a "predicate." Technically, r,rxu
is a predicate, not an operator. The end result is the same. Just be aware of
this term in case you run across it in SQL documentation or manuals.

\Mildcard searching can only be used with text fields (strings); you can't use wildcards
to search fields of nontext datafypes.

The Percent S¡É¡n (a) Wildcard
The most frequently used wildcard is the percent sign (z). Within a search string,
? means match any number of occurrences of any character. For example, to find all
products that start with the word rish, you can issue the following sELECT statement:

$x*PexS r:'

SELECT prod_id, prod name
FROM Products
WHERE prod_name LIKE 'Fish?' ;

#uxtgan*$,i i,
prod_id prod_name

BNBGo1 Fish bean bag toy

,Asçmilyçfis"r

This example uses a search pattem of 'rish?'. When this clause is evaluated, any
value that starts with rish will be retrieved. The a tells the DBMS to accept any
characters after the word ristr, regardless of how many characters there are.

ì,,i ,: : Casê Sensitivity
Depending on our DBMS and how it is configured, searches may be case
sensitive, in which case 'fish8' would not match Fish bean bag roy.

Wildcards can be used anywhere within the search pattem, and multiple wildcards
may be used as well. The following example uses two wildcards, one at either end of
the pattern:

Using the r.rKE Operator 53

lnput v
SEì.r.ECT prod_íd, prod_name
FROM Products
WHERE prod_name LIKE '?bean bagà'¡

Output v
prod_id prod_name

BNBGOl
BNBGO2
BNBGO3

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy

Analysis v
The sea¡ch pattern 'åbeani bagå' means match any value that contains the text bean
bag anyrhere withín it, regardless of any characters beþre or after that tøc|.

Wildcards can also be used in the middle of a search pattern, although that is rarely
useful. The following exarnple finds all products that begin with an r and end with a y.

lnput v
SELECT prod_name
FROM Products
Ï'IHERE prod_name LTKE 'FZy'î

It is important to note that, in addition to matching one or more characters, I also
matches zero characters. ? represents zero, one, or more characters at the specified
location in the search pattem.

.

{

emaÍ1AS rLf b?@f ort.a com

54 å"FI*ss&Fd &i Using Wildcard Filtering

,. i lvatch for frailing Spaces
Some DBMSs pad f¡eld contents with spaces. For example, if a column expects
50 characters and the text stored is rish bean bag toy (77 characters),
33 spaces may be appended to the text so as to fully fill the column. This
padding usually has no real impact on data and how it is used, but it could
negatively affect the just-used SQL statement. The clause wHERE prod_name
LIKE tF?yr 1r¡¡¡ only match prod name if it starts with r and ends with y, and
if the value is padded w¡th spaces, then it will not end with y and so Fish bean
bag Èoy will not be retrieved. One simple solution to this problem is to append
a second ? to the search pattern. 'r'?y?' will also match characters (or spaces)
âfter the y. A better solution would be to trim the spaces using functions, as
you will learn in Lesson 8, "Using Data Manipulation Functions."

,,ir,i:,.i WatCh fOf rU¡,r,

It may seem that the a wildcard matches anyth¡ng, but there is one exception:
taur,l. Not even the clause WHERE prod name LIKE ' *' will match a row with
the value NULL as the product name.

The Underscore (_) W¡ldcard
Another useful wildcard is the underscore l). The underscore is used just like t,
but instead of matching multiple characters, the underscore matches just a single
character.

'r.,:.-. DB2 Wildcarde
The _ wildcard is not supported by DB2

Take a look at this example:

Èr*p*ae*

SELECT prod*id, prod name
FROM Products
I^¡HERE prod_name l,tl(ll '_ inch teddy bear' ;

Watch for Trailing Spaces
As in the previous example, you may have to append a wildcard to the pattern
for this example to work.

Using the LrKE operator 55

tutpelt'tr
prod_id prod_name

BRO2
BRO3

12 inch teddy bear
18 ínch teddy bear

8 inch teddy bear
l-2 inch teddy bear
18 ínch teddy bear

Amafrys*s"+

The search pattern used in this wu¡n¡ clause specified two wildcards followed by
literal text. The results shown are the only rows that match the search pattern: the
underscore metches 12 in the first row and re in the second row. Thc I inch reddy
bear product did not match because the search pattem required two wildcard matches,
not one. By contrast, the following sELECT statement uses the a wildcard and returns
tfuee matching products:

lmput v
SELECT prod_id, prod name
FROM Products
WHERE prod_name L]KE r? inch teddy bear,;

$utpuå nr

prod_id prod_name

BRO].
BRO2
BNR3

Unlike ?, which can matgh zero characters, _ always matches one character-no more
and no less.

The Brackets (n) Wildcard
The brackets (¡¡) wildcard is used to specify a set of characters, any one of which
must match a character in the specified position (the location of the wildcard).

.t:

56 LESSON 6: Using Wildcard Filtering

For example, to find all contacts whose names begin with the letter,¡ or the letter ru,

you can do the following:

$nput to

SELECT cust_contact
FROM Cust.omers
WHERE cust_contact LIKE
ORDER BY cust_contac!;

SELECT cust_contact
FROM Customers
WHERE cust_contact LIKE
ORÐER BY cust contact;

Sutput v"

cust contact

.fim .ïones
,John Smith
Michelle creen

Analysis:r
The wnpns clause in this statement is ' t,rul a'. This search pattem uses two different
wildcards. The t,rul matches any contact name that begins with either of the letters
within the brackets, and it also matches only a single character. Therefore, any names
longer than one character will not match. The z wildca¡d after the [,JM] matches any
number of characters after the first character, retuming the desired results.

This wildcard can be negated by prefixing the characters with ^ (the caret character).
For example, the following matches any contact name that does not begin with the let-
ter .r or the letter r"r (the opposite of the previous example):

*nput w

[,]Ml å'

¡ [^,]Ml å'

Of course, you can accomplish the same result using the r¡or operator. The only
advantage of ^ is that it can simplify the syntax if you are using multiple wuunn
clauses:

Summary 57

lnput w

SELECT cust_contacÈ
FROM Cust.omers
WHERE NOT cust_contact
ORÐER BY cust_contact i

LIKE I,rMl å'

Tips for UsinÉi Wildcards
As you can see, SQL's wildcards are extremely powerful. But that power comes
with a price: wildcard searches typically take far longer to process than any other
search types discussed previously. Here are some rules to keep in mind when using
wildcards:

> Don't overuse wildcards. If another search operator will do, use it instead.

> When you do use wildcards, try not to use them at the beginning of the
search pattern unless absolutely necessary. Search pattems that begin with
wildcards are the slowest to process.

> Pay careful attention to the placement of the wildcard symbols. If they are
misplaced, you might not retum the data you intended.

Having said that, wildcards are an important and useful search tool, and one that you
will use frequently.

Summaty
In this lesson, you learned what wildcards are and how to use SQL wildcards within
your I^THERE clauses. You also learned that wildcards should be used carefully and
never overused.

58 LËSS$N 6: Using Wildcard Filtering

GhallenÍ|es
1. Write a SQL statement to retrieve the product name (prod_name) and

description (prod_desc) from the Products table, returning only products
where the word toy is in the description.

2. Now let's flip things around. Write a SQL statement to retrieve the product
name (prod_name) and description (prod_desc) from the Products
table, returning only products where the word roy doesn't appear in the
description. And this time, sort the results by product name.

3. Write a SQL statement to retrieve the product name (pro¡-name) and
description (prod_desc) from the Products table, retuming only products
where both the words toy and carrots appear in the description. There are
a couple of ways to do this, but for this challenge use ANÐ and two r,rKE
comparisons.

4. This next one is a little trickier. I didn't show you this syntax specifically, but
see whether you can figure it out anyway based on what you have leamed
thus far. Write a SQL statement to retrieve the product name (prod_name)
and description (prod_desc) from the products table, retuming only
products where both the words toy and carrots appearin the description in
that order (the word toy before the word carrots). Here's a hinl you'll only
need one r,rre with tfuee a symbols to do this.

Sreating Galculated Fields

In this lesson, you will learn what calculated fields are, how to create them, and how
to use aliates to reþr to them from within your applicatíon.

UnderstandinÉl Calculated Fields
Data stored within a database's tables is often not available in the exact format needed
by your applications. Here are some examples:

Þ You need to display a field containing the name of a company along with the
company's location, but that information is stored in separate table columns.

> City, state, and ZIP codes are stored in separate columns (as they should be),
but your mailing label printing program needs them retrieved as one
correctly formatted field.

Þ Column data is in mixed upper- and lowercase, and your report needs all
data presented in uppercase.

Þ An Orderrrems table stores item price and quantity, but not the expanded
price (price multiplied by quantity) of each item. To print invoices, you need
tllat expanded price.

Þ You need total, averages, or other calculations based on table data.

In each ofthese examples, the data stored in the table is not exactly what your
application needs. Rather than retrieve the data as it is and then reformat it within your
client application or report, what you really want is to retrieve converted, calculated,
or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns that we have retrieved
in the lessons thus far, calculated fields don't actually exist in database tables. Rather,
a calculated field is created on-the-fly within a SQL sur,rcr statement.

60 LçSS*F{ 7: Creatingl Calculated Fields

:t ,i, . l: :ll ',: Figld
Essentially means the same thing as column and often used interchangeably,
although database columns are typically called columns and the term f¡elds is
usually used in conjunct¡on with calculated fields.

It is important to note that only the database knows which columns in a sELEcr state-
ment are actual table columns and which are calculated fields. From the perspective
of a client (for example, your application), a calculated field's data is returned in the
same way as data from any other column.

": Cl¡ent Versus Server Formattingl
Many of the conversions and reformatting that can be performed within SQL
statements can also be performed directly in your client application. However, as
a rule, it is far quicker to perform these operations on the database server than
it is to perform them within the client.

Goncatenating Fields
To demonstrate working with calculated fields, let's stan with a simple example-
creating a title that is made up of two columns.

The vendors table contains vendor name and address information. Imagine that
you are generating a vendor report and need to list the vendor location as part ofthe
vendor name, in the format name (rocation) .

The report wants a single value, and the data in the table is stored in two columns:
vend._name and vend_country. In addition, you need to surround vend_country
with parentheses, and those are definitely not stored in the database table. The ssr.scr
statement that returns the vendor names and locations is simple enough, but how
would you create this combined value?

r,,; !' ';i:, ., Concatenate
.loining values together (by appending them to each other) to form a single long
value.

The solution is to concatenate the two columns. In SQL sELEcr statements, you
cari concatenate columns using a special operator. Depending on what DBMS you
are using, this operator can be a plus sign (+) or two pipes (| |). And in the case of
MySQL and MariaDB, a special function must be used as seen below.

Concatenating Fields

Here's an example using the plus sign:

lnput v
SELECT vend_name + ' (' + vend*country + ') '
FROM Vendors
ORDER BY vend_name¡

Output v
Bear Emporium
Bears R Us
Ðo11 House Inc.
Fun and Games
Furball Inc.
.Touets e¿ ours

61

I

(USA
(USA
(USA
(England
(USA
(France

The following is the same statement, but using the | | syntax:

lnput v
SELECT vend_name | |

FROM Vendors
ORDER BY vend_name;

(t ll vend_country ll t)'

Output v
Bear Emporíum
Bears R Us
Doll House Inc.
Fun and Games
Furball Inc.
JoueÈs et ours

(usA
(usA
(usA
(England
(USA
(France

And here's what you'll need to do if using MySQL or MariaDB:

lnput v
SELECT Concat (vend_nane,
FROM vendors
ORDER BY vend_name;

(', vend_country, ') ')

62 LËSSOf{ ?: Creating Calculated Fields

Analysis sr

The above sEr,Ecr statements concatenate the following elements:

> The name stored in the vend_name column

> A string containing a space and an open parenthesis

> The country stored in the vend_country column

> A string containing the close parenthesis

As you can see in the output shown above, the sELEcr statement refurns a single
column (a calculated field) containing all these four elements as one unit.

Look again at the output returned by the srr,uct statement. The two columns
fhat are incorporated into the calculated field are padded with spaces. Many data-
bases (although not all) save text values padded to the column width, so your own
results may indeed not contain those extraneous spaces. To retum the data format-
ted properly, you must trim those padded spaces. This can be done using the SQL
RrRrM () function, as follows:

lnput tt'

SELECT RTRIM(vend_name) * ' (' + RTRIM(vend_country) +

FROM Vendors
ORÐER BY vend_name;

áà--À---¿,:;llrt¡fltl¡* t,

Bear Emporium (USA)
Bears R Us (USA)
Ðo11 House rnc. (USA)
Fun and Games (England)
Furball Inc. (USA)
alouets et ours (France)

The following is the same statement, but using the | | syntax:

lnput -ts"

SELECT RTRIM(vend_name) | I

FROM Vendors
ORDER BY vend_name;

(' ll nrnru(vend-country) ll r)

Concatenating Fields 63

OutPut rir

Bear Emporium (USA)
Beârs R us (USA)
Dol-l Houae Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
,fouets et ours (France)

Analysis w

The nrRrr'r O function trims all space from the right of a value. When you use
RrRrM (), the individual columns are all trimmed properly.

,;r :., lþg rn¡¡A FUnCtlOnS

Most DBMSs support RrRrM () (which, as just seen, trims the right side of a
string), as well as LrRrM () , which trims the left side of a string, and rRrM () ,

which trims both the right and left.

Using Aliases
The ser.pcr statement used to concatenate the address field works well, as seen in the
above output. But what is tlte name of this new calculated column? Well, the truth is,
it has no name; it is simply a value. Although this can be fine if you are just looking
at the results in a SQL query tool, an unnamed column cannot be used within a client
application because there is no way for the client to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an alternate
name for a field or value. Aliases are assigned with the as keyword. Take a look at the
following s Er,Ecr statement:

lnput t¡'

(r + RTRIM(vend country) + ,)'+SELECT RTRIM(vend name)
AS vend t.itLe

FROM Vendors
ORDER BY vend_name;

64 LESSON ?: Creating Calculated Fields

Output v
vend_titIe

Bear Emporium (USA)
Bears R Us (USA)
Ðo11 House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
,Jouets et ours (France)

The following is the same statement, but using the | | syntax:

lnput v
SELECT RrRlM(vend_name) ll ' (' ll RTRIM(wend_country) ll '),
AS vend títle

FROM Vendors
ORDER BY vend name;

And here is the equivalent for use with MySQL and MariaDB

lnput v
SELECT Concat(RTrim(vend_name),' (',

RTrim(vend country) , ') ') AS vend_tit1e
FROM vendors
ORDER BY vend_namei

Analysic v
The ssrscr statement itself is the same as the one used in the previous code snippet,
except that here the calculated field is followed by the text AS vend_rirle. This
instructs SQL to create a calculated field named vend_rir1e containing the calcula-
tion specified. As you can see in the ouþut, the results are the same as before, but the
column is now named vend_tsirle, and any client application can refer to this column
by name, just as it would to any actual table column.

Performing Mathematical Calculations 65

i.rij'. Other Uses for Aliasea
Aliases have other uses too. Some common uses include renaming a column
if the real table column name contains illegal characters (for example, spaces)
and expanding column names ¡f the original names are either ambiguous or
easily misread.

.1.:ìI ji-;i-l:'.; Aliae NameS
Aliases may be single words or complete strings. lf the latter is used, then the
string should be enclosed within quotes. This practice is legal but is strongly
discouraged. While multiword names are indeed highly readable, they create
all sorts of problems for many client applications-so much so that one of
the most common uses of aliases is to rename multiword column names to
singl+word names (as explained above).

:'.r
-, r,: Derived Columns

Aliases are also sometirnes referred to as derived columns, so regardless of
the term you run across, they mean the same thing.

Performing Mathematical Galculations
Another frequent use for calculated fields is performing mathematical calculations on
retrieved data. Let's take a look at an example. The orders table contains all orders
received, and the orderrtems table contains the individual items within each order.
The following SQL statement retrieves all the items in order number 20008:

Input'r:r
SELECT prod_id, quaneity, itemjrice
FROM Orderltems
WHERE order num = 20008;

Output .
prod_id quantíty ítem¡>rice

RGANOl.
BRO3
BNBGOl.
BNBGO2
BNBGO3

5
5
10
10
10

4.9900
11.9900
3.4900
3.4900
3.4900

66 LEssoN 7: Creating Calculated Fields

The irem3rice column contains the per unit price for each item in an order. To
expand the item price (item price multiplied by quantity ordered), you simply do the
following:

lnput w
SELECT prod_id,

quantitY,
itemjrice,
quantity* item3ríce AS expandedjrice

FROM Orderltems
WHERE order num = 20008;

Output w
prorr_id quantíty item3rice expanded3rice

RGANOl
BRO3
BNBGO].
BNBGO2
BNBGO3

5
5
10
r-0
10

4,9900
11.9900
3.4900
3.4900
3.4900

24 .9500
59.9500
34.9000
34.9000
34.9000

Analysis sr

The expanded3rice column shown in the output above is a calculated field; the
calculation is simply quantity*item3rice. The client application can now use this
new calculated column just as it would any other column.

SQL supports the basic mathematical operators tisted in Tablc 7.L In addition, you
can use parentheses to establish order of precedence. Refer to Lesson 5, "Advanced
Data Filtering," for an explanation of precedence.

TABLE 7.1 SQL Mathematical Operators

Operator Descdption

+ Addition
Subtraction

* Multiplication
/ Division

rl

lì
o
l',ì

ar

summary 6il

Summary
In this lesson, you learned what calculaæd fields are and hiiw,to créate them. You
used examples demonstrating the use of calculated fields for both string concatenation
and mathematical operations. In addition, you learned how to creat€ and use aliases so
that your application can refer to calculated fields.

(-';

(1,

(.ì

()
(-',,

(

(,-,

(,

t-)

(,'
(_,,

(_,

L,I

(,

(-,,

(,

U

68 LESSON 7: Creating Calculated Fields

Ghallenges
1. A common use for aliases is to rename table column fields in retrieved

results (perhaps to match specific repcrting or client needs). Write a
SQL statemeil that retrieves vend_id, vend_name, wend_address, and
vend_city from vendors, renaming vend_name to rmame, vend_city to
vcity, and vend address to vaddress. Sort the results by vendor name
(you can use the original name or the renamed name).

2. Our example store is running a sale and all products are lTTo off. Write a
SQL statement that retums prod_ido prod3rice, and sale3rice from
the producrs table. sale3rice is a calculated field that contains, well" the
sale price. Here's a hinÍ you can multiply by o . s to get 90Vo of the original
value (and thus the 107o offprice).

l

'

Using Data Manipulation
Functions

In this lesson, you'll learn whøt funcÍions are, what fvpes of functíons DBMSs support,
and how to use these functions. You'll also learn why SQLfunction use can be very
problem"atic.

Understanding Functions
Like almost any other computer language, SQL supports [he use of functions to
manipulate data. Functions are operations that are usually performed on data, usually
to facilitate conversion and manipulation, and they are an important part of your
SQL toolbox.

An example of a function is erRrM 1¡ , which we used in the last lesson to trim spaces
from the end of a string.

The Problem w¡th Functions
Before you work through this lesson and try the examples, you should be aware that,
unfortunately, using SQL functions can be highly problematic.

Unlike SQL statements (for example, ser,ncr), which for the most part are supported
by all DBMSs equally, functions tend to be very DBMS specific. In fact, very few
functions are supported identically by all major DBMSs. Although all types of
functionality are usually available in each DBMS, the function names or syntax can
differ greatly. To demonstrate just how problematic this can be, Table 8.1 lists three
commonly needed functions and their syntax as employed by various DBMSs:

70

TABTE 8.1 DBMS Funct¡on Differences

Lffiss@F{ &; Using Data Manipulation Functions

Function

Extract part of
a string
Datatype conversion

Get current date

DB2, Oracle, PostgresQL, and SQLite use suBSrRO.
MariaDB, MySQL, and SQL Server use suBSrRrNc O .

Oracle uses multiple functions, one for each conversion
type. DB2, PostgresQL, and SQL Server use cAsr O .

MariaDB, MySQL, and SQL Server use coNVERr () .

DB2 and PostgresQL use cuRRENr_Datp. MariaDB and
MySQL use cuRDArE O. Oracle uses sysÐAru. SQL Server
USES GETDATE 0 . SQLitC USES DATE 0 ,

As you can see, unlike SQL statements, SQL functions are Íßt portable. This means
that code you write for a specific SQL implementation might not work on another
implementation.

F.ll:\¡i¡ "l l: fiM ; Portable
Code that is written so that it will run on multiple different systems.

With code portability in mind, some SQL programmers opt not to use any
implementation-specific features. Although this is a somewhat noble and idealistic
view, it is not always in the best interests of application performance. If you opt not to
use these functions, you make your application code work harder, as it must use other
methods to do what the DBMS could have done more efficiently.

Usingl Functions
Most SQL implementations support the following types of functions;

Þ Text functions are used to manipulate strings of text (for example, trimming
or padding values and converting values to upper- and lowercase).

Using Funct¡ons

BEAR EMPORIUM
BEARS R US
DOLL HOUSE TNC
FUN AND GÄMES
FURBALL INC.
.JOUETS ET OURS

> Numeric functions are used to perform mathematical operations on numeric
data (for example, retuming absolute numbers and performing algebraic
calculations).

Þ Date and time functions are used to manipulate date and time values and
to extract specific components from these values (for example, returning
differences between dates and checking date validity).

> Formatting functions are used to generate user-friendly outputs (for example,
displaying dates in local languages and formats, or currencies with the right
symbols and comma placement).

Þ System functions return information specific to the DBMS being used
(for example, returning user login information).

In the last lesson, you saw a function used as part of a column list in a sELECT
statement, but that's not all functions can do. You can use functions in other parts
of the sar,Ect statement (for instance, in the w¡lrRr clause), as well as in other SQL
statements (more on that in later lessons).

Text Manipulation Functions
You've already seen an example of text manipulation functions: in the last lesson, the
RTRIM () function was used to trim white space from the end of a column value. Here
is another example, this time using the uppnR O function:

lnput w
SELECT vend_name, UPPER(vend_name) AS vend name_upcase
FROM Vendors
ORÐER BY vend name;

Output v
vend_name vend_name_upcase

Bear Emporíum
Beârs R Us
Do11 House Inc.
Fun and Games
Furball Tnc.
,Jouets et ours

72 ¡.ËSS(¡Í{ 8: Using Data Manipulation Funct¡ons

As you can see, uppnRO converts text to uppercase, and so in this example each
vendor is listed twice-first exactly as stored in the vendors table, and then converted
to uppercase as column vend name_upcase.

..1: UPPERGASE, lowercase, MixedGase
As should be clear by now, SQL functions are not case sens¡tive, so you can
USe upperO, UPPERO, UpperO, Of substrO, SUBSTRO, SubstrO, and SO On
Case is a user preference, so do as you choose, but be consistent and don't
keep changing styles in your code; it makes the SQL really hard to read.

Table 8.2 lists some commonly used text manipulation functions.

TABLE 8.2 Commonly Used Text Manipulation Functions
Function Description

LEFT O (or use substring
function
LENGTHo (alSO perar,sNcrH o
or r,pu o)
LOWER ()

LTRIM 0
RrGHr () (or use substring
function)
RTRTM 0
sUBsTR 0 oT SUBSTRING 0
souNDEx o
UPPER 0

Returns characters from left of string

Returns the length of a string

Converts string to lowercase
Trims white space from left of string
Returns characters from r¡ght of string

Trims white space from right of string
Extracts part of a string (as noted in Table 8.1)
Returns a string's souNDEx value
Converts string to uppercase

One item in Table 8.2 requires further explanation. souNDEx is an algorithm that
converts any string oftext into an alphanumeric pattem describing the phonetic
representâtion ofthat text. souNDEx takes into account similar-sounding characters
and syllables, enabling strings to be compared by how they sound rather than how
they have been typed. Although souNDEx is not a SQL concept, most DBMSs do offer
souNDrjx support.

Using Functions

Here's an example using the soIJNÐEx () function. Customer Kíds place is in the
customers table and has a contact named ¡¿íchelle Green. But what if that were
a typo, and the contact actually was supposed to have been Michael ereen? Obvl-
ously, searching by the correct contact name would retum no data, as shown here:

lnput v
SELECT cust_name, cust contact
FROM Customers
WHERE cust_contact = 'Michael Green',.

Output v
cusf name cust côntect

Now try the same search using the souwoex O function to match all contact names
that sound similar to Michaer Green:

lnput v
SELECT custs_name, cust*contac!
FROM Customers
WHERE SOUNDEX(cust contact) . SOUNDEX('MíchaeL Green');

Output v
cust r¡ame cust contact

Kids Place MicheLl-e Green

73

I

\

\-

\
(.

\,

I

follõwing bxãlnple will ;'

74 Lñ$sæF{ sr Using Data Manipulation Functions

Analysis v
In this example, the wnsne clause uses the soulosx () function to convert both the
cusr_conracr column value and the search string to thei¡ sou¡rp¡x values. Because
Michaet creen and Míchel1e creen sound alike, their souNDEx values match, and
so the wusns clause correctly filtered the desired data.

Date and Time Manipulation Functions
Date and times are stored in tables using datatypes, and each DBMS uses its own
special varieties. Date and time values are stored in special formats so that they may
be sorted or filtered quickly and efficiently, as well as to save physical storage space.

The intemal format used to store dates and times is usually of no use to your appli
cations, and so date and time functions are almost always used to read, expand, and
manipulate these values. Because of this, date and time manipulation functions are
some of the most important functions in the SQL language. Unfortunately, they also
tend to be the most inconsistent and least portable.

To demonstrate the use of a date manipulation function, here is a simple example. The
orders table contains all orders along with an order date. To retrieve all ofthe orders
placed in a specific year, you'd need to filter by order date, but not the entire date
value, just the year portion of it. This obviously necessitates extracting the year from
the complete date.

To retrieve a list of all orders made in zozo in SQL Server, do the following:

inpui w
SELECT order_num
FROM Orders
WHERE DATEPART(y}¡, order date) = 2Q2\)i

tutput v'
order_num

20005
20006
2AA07
20008
20009

Using Functions 75

Analysis v
This example uses the DATEeART O function, which, as its name suggests, returns a

part of a date. petupARr O takes two parameters: the part to return and the date to
return it from. In our example DATEpART () specifies yy as the desired part and retums
just the year from the order_date column. By comparing lhatto 2020, the wnnRs
clause can filter just the orders for that year.

Here is the PostgresQl version, which uses a similar function named paru_paRr () :

lnput w
SELECT order_nurn
FROM Orders
WHERE ÐATE_PART(ryeârr, order_date) = 2020

Oracle has no ÐArEpARr O function either, but there are several other date manipula-
tion functions that can be used to accomplish the same retrieval. Here is an example:

lnput w
SELECT order_num
FROM Orders
WHERE EXTRACT(year FROM order date) = 2020;

Analysis v
In this example, the uxrRAcr () function is used to extract part of the date with year
specifying what part of the date to extract. The retumed value is then compared to
2020.

TiP: Poet¡ffeSQL Supports Exrracr ()

PostgreSQL also supports the sxrracr O function, so this technique will work
(in addition to using Dareparr O as seen previously).

Another way to accomplish this same task is to use the BETwEEN operator:

lnput v
SELECT order_num
FROM orders
WHERE order_date BETWEEN to_date ('2020-01-01 ' , tyyyy-mm-dd'

)

A¡fD to_date l'2020-r2-3!t , tyyyy-mm-dd') ;

/t) LËS6QN 8: Using Data Manipulation Functions

Analysis ry

In this example, Oracle's lo_dare () function is used to convert two strings to dates.
One contains the date January 1,2420, and the other contains the date December 31,
2020. A standard BETwEEN operator is used to find all orders between those two dates.
It is worth noting that this same code would not work with SQL Server because it
does not support the to_dare () function. However, if you replaced to_dare 1¡ with
DATEPART () , you could indeed use this type of statement.

DB2, MySQL, and MariaDB have all sorts of date manipulation functions, but not
DATEPART () . DB2, MySQL, and MariaDB users can use a function named ypen ()

to extract the year from a date:

lnnrrf w'

$ELECT order_num
FROM Orders
WHERE YEAR(order date) = 2020;

SQLite is a little trickier:

lnput w
SELECT order_num
FROM Orders
WHERE strftíme('?Y', order datse) = ,20201;

The example shown here extracted and used part of a date (the year). To filter by a
specific month, you could use the same process, specifying an AND operator and both
year and month comparisons.

DBMSs typically offer far more than simple date part extraction. Most have functions
for comparing dates, performing date-based arithmetic, formatting dates, and more.
But, as you have seen, date-time manipulation functions are particularly DBMS spe-
cific. Refer to your DBMS documentation for the list of the date-time manipulation
functions it supports.

Numerie Manipulation Functions
Numeric manipulation functions do just that-manipulate numeric data. These func-
tions tend to be used primarily for algebraic, trigonometric, or geometric calculations
and, therefore, are not as frequently used as string or date and time manipulation
functions.

f

i

l

(

Summary 77

The ironic thing is that of all the functions found in the major DBMSs, the numeric
functions are the ones that are most uniform and consistent. Table 8.3 lists some of the
more commonly used numeric manipulation functions.

TABTE 8.3 Commonly Used Numer¡c Manipulation Functions
Functlon Descíptlbn
ABs o
cos o
Exp o
PT0
srN o
sQRr ()

reN o

Returns a number's absolute value
Returns the trigonometric cosine of a specified angle
Returns the exponential value of a specific number
Returns the value of Pl

Returns the trigonometric sine of a specified angle
Returns the square root of a specified numþer
Returns the trigonometric tangent of a angle

1

Refer to your DBMS documentation for a list of the supported mathematical
manipulation fu nctions.

Summary
In this lesson, you leamed how to use SQL's data manipulation functions. You
also learned that although these functions can be extremely useful in formatting,
manipulating, and filtering data, the function details are very inconsistent from one
SQL implementation to the next.

(

(

(

t
(..-,

(_

t.
t.

78 LEssoN 8: Using Data Manipulation Functions

Ghallenfles
1. Our store is now online, and customer accounts are being created. All

users need a login, and the default login will be a combination of their name
and city. Write a SQL statement that retums customer ID (cust_id),
customer name (custorner_name), and user_Iogin, which is all
uppercase and composed of the first two characters of the customer contact
(cusr_conract) and the first tfuee characters of the customer city
(cust_city). So, for example, my login (Ben Forta living in Oak Park)
would be BEoAK. Hinfi for this one you'll use functions, concatenation,
and an alias.

2. Write a SQL statement to retum the order number (order_num) and order
date (order_date) for all orders placed in January 2020, sorted by order
date. You should be able to fi.gure this out based on what you have learned
thus far, but feel free to consult your DBMS documentation as needed.

LEssoN I
Summarizing Data

In this lesson, you will learn what the SQL aggregate functions are and how to use
them to surnmarize table datø.

Usin$ AÉßlreÉlate Functions
It is often Recessary to summarize data without actually retrieving it all, and SQL
provides special functions for this purpose. Using these functions, SQL queries are
often used to retrieve data for analysis and reporting purposes. Examples of this type
of retrieval are

> Determining the number of rows in a table (or the number of rows that meet
some condition or contain a specific value)

> Obtaining the sum of a set of rows in a table

> Finding the highest, lowest, and average values in a table column (either for
all rows or for specific rows)

In each of these examples, you want a summary of the data in a table, not the actual
data itself. Therefore, retuming the actual table data would be a waste of time and
processing resources (not to mention bandwidth). To repeat, all you really want is the
summary information.

To facilitate this type of retrieval, SQL features a set of five aggregate functíons,
which are listed in Table 9.1. These functions enable you to perform all the types of
retrieval juot enumerated, You'll be relieved to know that unlike the data manipulation
functions in the last lesson, SQL's aggregate functions are supported pretty
consistentþ by the major SQL implementations.

',.,:,NEW

FunctionS that operate on

80 LESSON g: Summarizing Data

TABLE 9.1 Functions
Function

evco
corßT o
MAx o
MIN 0
stir"r ()

Returns a column's average value
Returns the number of rows in a column
Returns a column's highest value
Returns a column's lowest value
Returns the sum of a column's values

The use of each of tlpse functions is explained in the following sections.

The eve o Function
evo () is used to retum the average value of a specific column by counting both the
number of rows in the table and the sum of their values. Avc () can be used to return
the average value of all columns or of specific columns or rows.

This first example uses AVc () to return the average price of all the products in the
Products table:

lnput v
SELECT AVG(prodjríce) AS awg3rice
FROM Products;

Output v
avg3rice

6.823333

Analysis v
The sslscr statement above retums a single value-avg3rice, which contains
the average price of all products in the products table. avg3rice is an alias as

explained in Lesson 7. 'Creating Calculated Fields."

Avc () can also be used to determine the average value of specific columns or rows.
The following example returns the average price of products offered by a specific
vendor:

lnput v
SELECT AVc(prodjrice) AS awg3ríce
FROM Products
IIIHERE vend id = 'DLL01' '

Using Aggregate Functions 81

Output v
avgjrr-ce

3 . 8650

Analysis v
This seLsct statement differs f¡om the previous one only in that this one contains
a viri{ERE clause. The wrsns clause filters only products with a vendor_id of or,r,or,
and, therefore, the value retumed in avg3rice is the average of just that vendor's
products.

CAUTION: lndividual Golumns Onl¡r
evc () may only be used to determine the average of a specific numeric column,
and that column name must be specified as the function parameter. To obtain
the âverage value of mu,ltiple columns, you must use multiple eve O functions.
The exception to this is when returning a single value that is calculated from
multiple columns, as witil be explained later in this lesson.

NOTE: rur"¡, Values
Column rows containing ñirr.L values are ignored by the AVc () function.

The couxr o Function
couNr () does just that-it counts. Using courr 1) , you can determine the number of
rows in a table or the number of rows that match a specific criterion.

cOiJNr () Can be used two ways:

) Use couNT (*) to count the number of rows in a table, whether columns
contain values or nur,r, values.

Þ Use couNT (column) to count the number of rows that have values in a
specific column, ignoring rur,r, values.

This first example returns the total number of customers in the customers table:

lnput v
SELECT COUNT(*) AS num cust
FROM Customers i

82

Output v
r¡um_cugt

5

3

LE$SON 9: Summarizing Data

Analysis v
In this example, cotrNT (*) is used to count all rows, regardless of values. The count is
returned in num_cust,

The following example counts just tlte customers with an email address:

lnput v
SELECT COUNT(cust_emaiL) AS num_cust
FROM Customers;

Output v
num cust

Analysis v
This ssl,ucr statement uses couNr (cust_email) to count only rows with a value in
the cust_email column. In this example, cust_emalr is : (meaning that only 3 of
the 5 customers have email addresses).

The ¡rex o Function
MAx () retums the highest value in a specihed column. uax 1¡ requires that the column
name be specified, as seen here:

lnput v
SELECT tvlÂx (prod3rice) ÃS max3rice
FROM ProducÈs;

Using Aggregate Functions 83

Output v
mæcjrlcÊ

11.9900

Analysis v
Here uax () retums the p¡ice of the most expensive item in the products table.

The urw o Function
MrN () does the exact opposite of MAx () -it retums the lowest value in a specified
column. Like uax () , MrN () requires that the column name be specified, as seen here:

lnput v
SELECT MIN(prodjríce) AS min3ríce
FROM Products,

Output v
min3ricE

3.4900

\ Analysis v
Here uru () retums the price of t}te least expensive item in the products table.

TIP: Ureing ¡rrN(,) with Nonnumerlc Data

return row that would be first the data that column.

values,
many
Although

the

(but
MIN

not lt)
rs

columns including
DBMSs
usually used

allow it to
find the

used
textual columns. When .used

to

were

lowest
return

sorted

numeric
the

by

lowest
date

with textual data, MrN ()
value

84 LESSON 9: Summarizing Data

The sur () Function
suM () is used to reh¡m tfie sum (total) of the values in a specific column.

Here is an example to demonstrate this. The orderrrems table contains the actual
items in an order, and each item has an associated quanricy. The total number of
items ordered (the sum of all the quanrÍry values) can be retrieved as follows:

lnput v
SELECT SUM(quantity) AS items ordered
FROM Orderltems
WHERE order_num = 20005;

Output v
items ordered

200

Analysis v
The function suM (quantity) retums the sum of all the item quantities in an order,
and the w¡rene clause ensures that just the right order items are included.

srJM () can also be used to total calculated values. In this next example the total order
amount is retrieved by totaling itemjrice*quanrity for each item:

lnput v
SEÍ,ECT SUM (itemjricetquantity) AS total3rice
FROM Orderltems
WHERE order num = 20005;

NOTE: ¡rur,r, Values
Column rows with ivur,¡, values in

Aggregates on D¡stinct Values 85

Output v
Èotaljrice

L648.0000

Analysis v
The function suM (item3rice*quântity) retums the sum of all the expanded prices
in an order, and again the w:rsRe clause ensures thatjust the right order items are
included.

NOTE: rurr, Values
Column rows with lru¡,r, values in them are ignored by the suM O function. '

AÉÉreÉates on Distinct Values
The five aggîegate functions can all be used in two ways:

Þ To perform calculations on all rows, specify the er,l argument or specify no
argument at all (because er,r, is the default behavior).

> To include only unique values, specify the DrsrrNcr argument.

The following example uses the evs () function to return the average product price
offered by a specific vendor. It is the same sEr,Ecr statement used above, but here the
DrsrrNcr argument is used so that the average only takes into account unique prices:

lnput v
SELECT AVG(DISTINCT prod price) AS avg3rice
FROM Products
?'IHERE vend_id = rDLLOlr;

on
the

MU Itiple
example.

TIP: Columns:,Galeulatlone Multiple ..,:'

default behavior. lf ,
TIP: ¡r.¡ ls Default

nrsrrNcr is
The er,¡, a

86 LESSON 9: Summarizing Data

Output v
avg3rice

4.2400

Analysis v
As you can see, in this example avg3rice is higher when olstrl¡ct is used because
there are multiple items with the same lower price. Excluding them raises the average
price.

Gombinin$ Atl¡fre$ate Functions
All the examples of aggregate functions used thus far have involved a single function.
But actually, sELEcr statements can contain as few or as many aggregate functions as

needed. Look at this example:

Input v
SELECT COttNT(*) AS num_iÈems,

MIN(prodjrice) AS price_min,
MÃx(prodjrice) AS price_max,
AVc (prodJrice) AS príce_avg

FROM Products;

Summary

Output v
num_ítems príce_mín price_max priee_avg

9 3 .4900 LL.9900 6 - 823333

Analysis v
Here a single snr,Ecr statement performs four aggregate calculations in one step and
returns four values (the number of items in the products table and the highest, low-
est, and average product prices).

Summany
Aggregate functions are used to summarize data. SQL supports five aggregate func-
tions, all of which can be used in multiple ways to return just the results you need.
These functions are designed to be highly efficient, and they usually return results
far more quickly than you could calculate them yourself within your own client
application,

87

88 LESSON 9: Summarizing Data

Ghallenges
1, Write a SQL statement to determine the total number of items sold (using the

quantity column in orderttems).

2. Modify the statement you just created to determine the total number of
product item (prod_item) enor sold.

3. Write a SQL statement to determine the price þrod3rice) of the most
expensive item in the producrs table that costs no more than ro. Name the
calculated field max price.

(

I

('

I

(

LESSON 10

Grouping Data

In this lesson, you'll leam how to group dnta so that you can summariT,e subsets of
tøble contents. This ìnvolves two new spr,Ecr statement clauses: the c,r¿ovp ay clause
andthe HAVTNc clause.

Understand¡ng Data Groupingl
In the last lesson, you learned that the SQL aggregate functions can be used to
summarize data. These functions enable you to count rows, calculate sums and
averages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far were performed on all fhe data in a table or on data t}tat
matched a specific wr,IsRs clause. As a reminder, the following example returns the
number of products offered by vendor Dr,r.,o1:

lnput v
SELECT COUNT(*) AS nunrjrods
FROM Product.s
$IHERE vend id =!DLLO1r;

Output v
num3rods

4

But what if you wanted to retum the number of products offered by each vendor? Or
products offered by vendors who offer a single product, or only those who offer more
than 10 products?

This is where groups come into play. Grouping lets you divide data into logical sets so
tlrat you can perform aggîegate calculafions on each group.

t

l

(_.

90 TESSON Lo: Grouping Data

Greating Groups
Groups are created using the cRoup By clause in your srr,Ecr statement. The best
way to understand this is to look at an example:

lnput v
SELECT vend_id. COUNT(*) AS numjrods
FROM Products
GROUP BY vend 1d;

Output v
vend_id num3rods

BRSOl
DLLOl
FNGO].

Analysis v
The above snr,Ecr statement specifies two columns, vend_íd, which contains the ID
of a product's vendor, and num3rods, which is a calculated field (created using the
couNr (*) function). The enoup sv clause instructs the DBMS to sort the data and
group it by vend_id. This causes num3rods to be calculated once per vend_id rather
than once for the entire table. As you can see in the output, vendor ensor has

: products listed, vendor or,r.or has 4 products listed, and vendor rtoor has

z products listed.

Because you used cRoup By, you did not have to specify each group to be evalu-
ated and calculated. That was done automatically. The cRoup By clause instructs the
DBMS to group the data and then perform the aggregate on each group rather than on
t]le entire result set.

Before you use cRoup By, here are some important rules about its use that you need
to know:

> cRoup ev clauses can contain as many columns as you want. This enables
you to nest groups, providing you with more granular control over how data
is grouped.

> If you have nested groups in your cRoup By clauseo data is summarized
at the last specified group. In other words, all the columns specified are
evaluated together when grouping is established (so you won't get data back
for each individual column level).

3
4
2

Filter¡ng Groups 91

> Every colurnr listed in cRoup By must be a retrieved column or a valid
expression (but not an aggregate function). If an expression is used in the
sEr,EcT, that same expression must be specified in cRoup ey. Aliases cannot
be used.

> Most SQL implementations do not allow cRoup By columns with variable-
length datatypes (such as text or memo fields).

> Aside from the aggregate calculation statements, every column in your
SELECT statement must be present in the enoup ey clause.

> If the grouping column contains a row with a NUI,L value, rcur,r, will be
returned as a group. If there are multiple rows with nur,l values, they'll all
be grouped together.

> The cRoup By clause must come after any wHERE clause and before any
oRDER BY clause.

TIP: The er,¡, Clause
Some SQL implementations (such as Microsoft SQL Server) support an optional
er,r, clause within enoup ey. This clause can be used to return all groups, even
those that have no matching rows (in which case the aggregate would return
uur,r,). Refer to your DBMS documentâtion to see if it supports ALL.

CAUTION: Spec¡fy¡ng Golumns by Relative Position
Some SQL implementations allow you to specify cRoup By columns by the
position in the spr¡cr list. For example, cRoup By 2,r çan mean group by the
second calumn se/ected and then by the first. Although this shorthand syntax is
convenient, it is not supported by all SQL implementations. lts use is also risky
in that it is highly susceptible to the introduction of errors when editing SQL
statements.

Filtering Groups
In addition to being able to group data using cRoue ev, SQL also allows you to filter
which groups to include and which to exclude. For example, you might want a list of
all customers who have made at least two orders. To obtain this data, you must filter
based on the complete group, not on individual rows.

s2 $.ËS,s$¡U åÐ: Grouping Data

You've already seen the wnnen clause in action (that was introduced back in Lesson 4,
"Filtering Data"). But wHERE does not work here because wH¡ep filters specific rows,
not groups. As a matter of fact, wuuRs has no idea what a group is.

So what do you use instead ofwnsns? SQL provides yet another clause for this
purpose: the savrme clause. HAVTNc is very similar to wHERE. In fact, all types of
w¡reas clauses you've leamed about thus far can also be used with nAVrNG. The only
difference is that wH¡Bu filters rows and Hevrne filters groups.

TIP: ¡ravrr¡e Supports All wr¡rns's Operators
ln Lesson 4 and Lesson 5, "Advanced Data Filtering," you learned about wHsRe
clause conditions (including wildcard conditions and clauses with multiple
operators). All the techniques and options that you've learned about wHERE can
be applied to HAVTNG. The syntax is identical; just the keyword is different.

So how do you filter groups? Look at the following example:

lnput v
SELECT cust_id, COUIIT(*)
FROM Orders
GRoUP BY cust_id
HAVING COLfi{T '{ =- i ;

AS orders

Output v
cust id orders

t_000000001_ 2

Analysis v
The first th¡ee lines of this ssr,¡cr statement a¡e similar to the statements seen
above. The final line adds a savrl¡c clause that filters on those groups with a
COUNT (*) >= 2-two Or mgre OrderS.

As you can see, a wHERE clause couldn't work here because the filtering is based on
the group aggregate value, not on the values of specific rows.

NOTE: The Difference Between rrAvrNG and wunnr
Here's another way to look it: wuenn filters before data is grouped, and HAVTNc
filters after data is grouped. This is an important distinction; rows that are
eliminated by a wurnn clause will not be included in the group. This could
change the calculated values, which in turn could affect which groups are
filtered based on the use of those values in the HAVTNc clause.

Fiftering Groups 93

So is there ever a need to use both wsnRp and HAvrNc clauses in one statement?
Actually, yes, there is. Suppose you want to further filter the above statement so that it
returns any customers who placed two or more orders in the past 12 months. To do that,
you can add a wnsns clause that filters outjust the orders placed in the past 12 months.
You then add a ¡revrl¡e clause to filter just the groups with two or more rows in them.

To better demonstrate this, look at the following example, which lists all vendors who
have two or more products priced at 4 or more:

lnput v
SELECT vend id, COUNT(*) AS numjrods
FROM Products
WHERE prodjrice >= 4

GROUP BY vend id
HAVING COUNT(*l ,= 2¡

Output v
vend_id nurn3rods

BRSOl
FNGO]-

3

Analysis v
This statement warrants an explanation. The first line is a basic s¡r,scr using an
aggregate function-muctr like the examples thus far. The wnene clause filters all
rows with a prodjrice of at least s.Dafa is then grouped by venrr id, and then a
HAVTNc clause filters just those groups with a count of z or more. Without the wHERE

clause, an extra row would have been retrieved (vendor or,¡,or who sells four products
all priced under +) as seen here:

lnput v
SELECT vend_id, COUNT(*) Ag numjrods
FROM Products
GROUP BY vend_id
HAVING COUNT(*) >= 2;

Output v
vend_id num_¡>rods

BRS0r.
DLLO].
FNGO].

3
4
2

94 &.HSSS$Ë åtlr Grouping Data

NOTE: Uslngl nAvrrc and v{HERÊ

HAvrNc is so similar to r'irrERE that most DBMSs treat them as the same thing
if no cRoup ev is specified. Nevertheless, you should make that distinction
yourself. Use nevruc only in conjunction with cRoup By clauses. Use wnuns for
standard rowlevel filtering.

Grouping and Sorting
It is important to understand that cRoup ev and oRDER BY are very different, even
though they often accomplish the same thing. Table 10.1 summarizes the differences
between them.

TABTE 10.1 oRDER BY VCTSUS GROUP BY

ORDER BY GROUP BY

Sorts generated output.

Any columns (even
columns not selected)
may be used.
Never required.

Groups rows. ïhe output might not be in group order,
however.

Only selected columns or expressions columns may be
used, and every selected column expression must be
used.
Required if using columns (or expressions) with
aggregate functions.

The first difference listed in Table 10.1 is extremely important. More often than not,
you will find that data grouped using cRoue ev will indeed be output in group order.
But that is not always the case, and it is not actually required by the SQL specifica-
tions. Furthermore, even if your particular DBMS does, in fact, always sort the data
by the specified enoup nv clause, you might actually want it sorted differently. Just
because you group data one way (to obtain group-specific aggregate values) does not
mean that you want the output sorted that same way. You should always provide an
explicit oRDER By clause as well, even ifit is identical to the GRoup By clause.

TIP: Don't Forget oRDER BY

As a rule, anytime you use a GRoup ey clause, you should also specif, an
oRDER By clause. That is the only way to ensure that data will be sorted
properly. Never rely on GRoup By to sort your data.

To demonstrate the use ofboth GRoup By and onosn By, let's look at an example.
The following snrEcr statement is similar to the ones seen previously. It retrieves

Grouping and Sorting

the order number and number of items ordered for all orders containing tlree or more
items:

lnput v
SELECT order_num, COUNT(*) AS items
FROM Orderltems
GROUP BY order_num
HAVTNG COUNT(*) >= 3;

Output v
order num items

20006
20007
20008
20009

To sort the output by number of items ordered, all you need to do is add an oRDER By
clause, as follows:

lnput v
9E'['ECT order_num, COUNT(*) AS items
FROM Orderltems
GROUP BY order_num
HAVIN. COUNT(*) >= 3
ORDER BY items, order num;

Output v
order num ítems

95

(

3
5
5
3

20006
20009
20007
20008

3
5

5
5

(.

Analysis v
In this example, the enoun sy clause is used to group the data by order number
(the order_num column) so that the couNT (*) function can return the number of items
in each order. The I{AvrNG clause filters the data so that only orders with three or more
items are returned. Finally, the output is sorted using the oRDER By clause.t.,

(.

I

96 LESSON 1O: Grouping Data

sELEcr Glause orderin$
This is probably a good time to review the order in which sELEcr statement clauses
are to be specified. Table 10.2 lists all the clauses we have learned thus far, in the
order they must be used.

TABIE 10.2 sELEcr Clauses and Their Sequence
Clause Description Required

SELECT

VITIERE

GROUP BY

FROM

ITÀVING

ORDER BY

Columns or expressions
to be returned
Table to retrieve data from

Rowlevel filtering
Group specification

Grouplevel filtering
Output sort order

Yes

Only if selecting data from
a table
No
Only if calculating aggregates
by group
No

No

Summary
In Lesson 9, "Summarizing Data," you leamed how to use the SQL aggregate
functions to perform summary calculations on your data. In this lesson, you learned
how to use the cRoup By clause to perform these calculations on groups ofdata,
returning results for each group. You saw how to use the HAvrNc clause to filter
specific groups. You also leamed the difference between oRDER By and enoup sv
and between wgeRa and HAVrNc.

". j

.,ii;

Challenges

Ghalleng¡es
1, The orderrrems table contains the individual items for each order. Write

a SQL statement that retums the number of lines (as order_lines) for each
order number (order num) and sort the results by order_1ines.

2. Write a SQL statement that retums a field named cheapest_item, which
contains the lowest-cost item for each vendor (using proa3rice in the
products table), and sort the results from lowest to highest cost.

3. It's important to identify the best customers, so write a SQL statement to
return the order number (order_num in the order¡tems table) for all orders
of at least 100 items.

4. Another way to determine the best customers is by how much they have
spent. Vy'rite a SQL statement to retum the order number (order_num in the
orderrrems table) for all orders with a total price of at least rooo. Hint: for
this one you'll need üo calculate and sum the total (item3rice multiplied
by quantity). Sort the results by order number.

5. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

SELECT order_num, COUNT(*) AS items
FROM Orderltems
GROUP BY iLems
HAVING COUNT(*) >= 3
ORÐER BY items, order num¡

97

i

{

t.,,

{

LESSON 11

Working with Subqueries

In this lesson, you'll leam what subqueries are and how to use them.

UnderstandinÉl Su bqu eries
sELEcr statements are SQL queries. All the sELEcr statements we have seen thus far
are simple queries-single statements retrieving data from individual database tables.

SQL also enables you to create subqueries-queries that are embedded into other
queries. Why would you want to do this? The best way to understand this concept is
to look at a couple of examples.

Filtering by Subquery
The databa.se tables used in all the lessons in this book are relational tables. (See
Appendix A, "Sample Table Scripts," for a description of each of the tables and their
relationships.) Orders are stored in two tables. The orders table stores a single row
for each order containing order number, customer ID, and order date. The individual
order items are stored in the related orderrtems table. The orders table does not store
customer information. It only stores a customer ID. The actual customer information is
stored in th€ customers table.

Now suppose you wanted a list of all the customers who ordered item nee¡qor. What
would you have to do to r.etrieve this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item Ronnor.

2, Retrieve the custorner ID of all the customers who have orders listed in the
ordçr numbers returned in the previous step.

3. Retrieve the customer information for all the customer IDs returned in the
previous step.

I

t.

100 LESSON 11: Working with Subqueries

Each of these steps can be executed as a separate query. By doing so, you use the
results returned by one sELEcr statement to populate the wHunn clause ofthe next
SELECT Statement.

You can also use subqueries to combine all three queries into one single statement.

The first sELEcr statement should be self-explanatory by now. It retrieves the
order_num column for all order items with â prod_id of ne¡r¡or. The output lists the
two orders containing this item:

lnput v
SELECT order_num
FROM Orderltems
WHERE prod_id = rRGANOlr;

Output v
order num

20007
20008

Now that we know which orders contain the desired item, the next step is to retrieve
the customer IDs associated with those order number, zoooz and zoooa. Using the
lr.r clause described in Lesson 5, 'Advanced Data Filtering," you can çreate a sELEcr
statement as follows:

lnput v r ì *,. nrto.¡¡". '* r*'. ,i6' S -ù". Ê-ii -" d d 4 !ô- ,ù f,, , a.

SELECT cusl_id
FROM Orders
WHERE order_num IN (20007,20008] i

Output v
cust_id

r.0 000 000 04
L 0 000 0000 5

Filtering by Subquery

Now, combine the two queries by turning the first (the one that refumed the order
numbers) into a subquery. Look at the following sELEcr statement:

lnput v
SELECT cust_íd
FROM Orders
WHERE order_num IN (SELECT order_num

FROM Orderltems
WHERE prod_id = IRGÃNOL');

Output v
cust id
1000000004
l-000000005

Analysis v
Subqueries are always processed starting with the innermost snr.Ecr statement and
working outward. When the preceding sELEcr statement is processed, the DBMS
actually performs two operations.

It fi¡st runs the following subquery:

SELECT order num FROM orderitems WHERE prod id-rRGANO1'

That query returns the two order numbers zooor and 2ooo8. Those two values are
then passed to the I¡HERE clause of the outer query in the comma-delimited format
required by the ru operator. The outer query no,tr becomes

SELECT cust id FROM orders WIIERE order num IN (2A007,20008)

As you can see, the output is correct and exactly the same as the output retumed by
the hard-coded wgpne clause above.

101

TIP: Formatt¡ng Your SQL
sELEcr statements containing subqueries can be difficult to read and debug,
especially as they grow in complexity. Breaking up the queries over mult¡ple
lines and indenting the lines appropriately as shown here can greatly simplit
working with subqueries.
lncidentally, this is where color coding also becomes invaluable, and the better

troubleshooting 'much

do indeed codê SQL for just this lso

F,ËSSÕN 3.1: Working with Subqueries

You now have the IDs of all the customers who ordered item Rcarqor. The next step is
to retrieve the customer information for each of those customer IDs. Here is the SQL
statement to retrieve the two columns:

lnput v
SELECT cust_name, cust_contacÈ
FROM Customers
V,IHERE cusÈ_id IN (L000000004, 1000000005) ;

Instead of hard-coding those customer IDs, you can turn this w::rRs clause into yet
another subquery:

lnput v
SELECT cuse_name, cusÈ_contact
FROM Customers
I^IHERE cust_íd IN (SELECT cust_id

FROM Orders
WHERE order num lN (SELECT order_num

FROM Orderltens
WHERË prod_id = iRGAN0L')) ;

Output v
cust name cust contact

Fun4A11 Ðenise L. Stephens
Kím HowardThe Toy Store

Analysis v
To execute the above sELEcr statement, the DBMS had to actually perform tfuee
sEr,Ecr statements. The innermost subquery returned a list of order numbers that were
then used as the wHpRp clause for the subquery above it. That subquery returned a
list of customer IDs that were used as the wspRp clause for the top-level query, The
top-level query actually retumed the desired data.

As you can see, using subqueries in a wHsRe clause enables you to write extremely
powerful and flexible SQL statements. There is no limit imposed on the number of
subqueries that can be nested, although in practice you will find that performance will
tell you when you are nesting too deeply.

Using Subqueries as Calculated Fields 103

Using Subqueries as Galculated Fields
Another way to use subqueries is in creating calculated fields. Suppose you wanted fo
display ttre total number of orders placed by every customer in your customers tâble.
Orders are stored in the orders table along with the appropriate customer ID.

To perforrn this operation, follow these steps:

1, Retrieve the list of customers from the customers table.

2. For each customer retrieved, count the number of associated orders in the
orders table.

As you leamed in the previous two lessons, you can use sELEcr couNT (*) to count
rows in a table, and by providing a wHERE clause to filter a specific customer ID, you
can count just that customer's orders. For example, the following code counts the
number of orders placed by customer 1ooooo000r-:

lnput v
SELECT COUNT(*) AS orders
FROM Orders
WHERE cuet id = 1000000001;

To perforÍì that couNT (*) calculation for each customer, use couNT* as a subquery
Look at the following code:

lnput v
SELECT cust_name,

cust_state,
(SELECT COUNT (t)
FROM Orders
WHERE Orders.cust id = Customers.cust id) AS orders

FROM CusLomers
ORDER BY cust name;

1,04 LESSON 11: Working with Subqueries

cust_state orders

ÏN
AZ
OH
ÏL
MI

Output v
cust name

Fun4A11
Fun4Al1
Kíds Place
The Toy Store
Ví1lage Toys

1
L
0
1

Analysis v
This spr,ecr statement returns tlree columns for every customer in the customers
table: cust_name, cust_sÈat.e, ând orders. orders is a calculated field that is set by
a subquery that is provided in parentheses. That subquery is executed once for every
customer retrieved. In the example above, the subquery is executed five times because
five customers were retrieved,

The wuens clause in the subquery is a little different from the wr¡uau clauses used
previously because it uses fully qualified column names; instead of just a column
name (cust_ia), it specifies the table and the column name (as orders. cusr_id ând
cusÈomers. cust_id). The following w¡rens clause tells SQL to compare the cusr_id
in the orders table to the one currently being retrieved from the cusromers table:

WHERE Orders.cust íd = Customers.cust id

This syntax-the table name and the column name separated by a period-must be
used whenever there is possible ambiguity about column names. In this example, there
are fwo cusÈ_id columns, one in customers and one in orders. Without fully quali-
fying the column names, the DBMS assumes you are comparing the cusr_id in the
orders table to itself. Because

SELECT COUNT(*) FROM Orders WHERE cust id = cust id

will always retum the total numher of orders in the orrJers table, the results will not
be what you expected:

lnput v
SELECT cust_name,

cust'_state,
(sEr,EcT cotrNT(*)
FROM Orders
WHHRE cust_id = cusE_id)

FROM Customers
ORDER BY cust name;

AS orders

Summary

cust_state orders

105

Output v
cust name

Fun4All
Fun4Al1
Kids Place
The Toy SÈore
Ví1lage Toys

IN
AZ
OH
TL
MI

5
R

5
5
5

Although subqueries are extremely useful in constructing this type of snr,uct
statement, care must be taken to properly qualify ambiguous column n¿Ìmes.

CAUTION : Fllly Qualiffed, polumn l{ames
You just Êaw.a'very importaot:f€ãsorì to use fully qualified col,umninames.

.DBMS

Bast

retrieval. You
:in the ::next tivo ilessons.

Summary
In this lesson, you learned what subqueries are and how to use them. The most
common uses for subqueries are in wirnns clause rn operators and for populating
calculated columns. You saw examples of both of these types of operations.

I

i

\.:

I

¡.ESSÛN tÍ": Working with Subqueries

Ghallenges
1. Using a subquery, return a list of customers who bought items priced ro or

more. You'll want to use the orderrrems table to find the matching order
numbers (order_num) and then tlte orders table to retrieve the customer ID
(cust_id) for those matched orders.

2. You need to know the dates when product BR01 was ordered. V/rite a SQL
statement that uses a subquery to determine which orders (in orderrtems)
purchased items with â prod_id of enor- and then retums customer ID
(cust_id) and order date (order_date) for each from the orders table. Sort
the results by order date.

3, Now let's make it a bit more challenging. Update the previous challenge
to retum the customer email (cust_emaíL in the customers table) for
any customers who purchased items with a prod_íd of snor. Hint: this
involves the ssLnct statement, the innermost one retuming order_num from
orderrtems, and the middle one retuming cust_íd from customers.

4. We need a list of customer IDs with the total amount they have ordered.
Write a SQL statement to return customer ID (cust_id in the orders table)
and total_ordered using a subquery to return the total of orders for each
customer. Sort the results by amount spent from greatest to the least. Hint:
youove used the suuO to calculate order totals previously.

5. One more. Write a SQL statement that retrieves all product names
(prod_name) from the Products table, along with a calculated column
named quant_sold containing the total number of this item sold (retrieved
using a subquery and a su"t {quantity) on the orderrtems table).

ü

#æffim$mffi Yæfutræm

In this lesson, you'll leam what joins are, why they are used, and how to create
SELECT stotenxents using them.

Understanding Joins
One of SQL's most powerful features is the capability to join tables on-the-fly within
data retrieval queries. Joins are one ofthe most important operations that you can
perform using SQL sELEcr, and a good understanding ofjoins andjoin syntax is
an extremely important part of leaming SQL.

Before you can effectively usejoins, you must understand relational tables and the
basics of relational database design. What follows is by no means complete coverage
of the subject, but it should be enough to get you up and running.

Understanding Relational Tables
The best way to understand relational tables is to look at a real-world example, one
based on the data you've used in the lessons thus far.

Suppose you had a database table containing a product list, with each product in its
own row. The kind of information you would store with each product would include
a description and price, along with vendor information about the company that creates
the product.

Now suppose that you had multiple products created by the same vendor. Where
would you store the vendor information (things like vendor name, address, and contact
information)? You wouldn't want to store that data along with the products for several
reasons:

Þ Because the vendor information is the same for each product that vendor
produces, repeating the information for each product is a waste of time and
storage space.

) If vendor information changes (for example, if the vendor moves or the
contact info changes), you would need to update every occurience of the
vendor information.

108 LESSOT 12: Joining ïables

Þ When data is repeated (that is, the vendor information is used with each
product), there is a high likelihood that the data will not be entered
identically each time. Inconsistent data is extremely difficult to use in
reporting.

The key here is that having multiple occurrences of the same data is never a good
thing, and that principle is the basis for relational database design. Relational tables
are designed so that information is split into multiple tables, one for each data fype.
The tables are related to each other through common values (and thus the relational in
relational design).

In our example, you can create two tables---one for vendor information and one for
product information. The vendors table contains all the vendor information, one table
row per vendor, along with a unique identifier for each vendor. This value, called a
primary key, can be a vendor ID or any other unique value.

The products table stores only product information and no vendor-specific
information other than the vendor ID (the vendors table's primary key). This key
relates the vendors table to tJre producrs table, and using this vendor ID enables you
to use the vendors table to find the details about the appropriate vendor.

What does this do for you? Well, consider the following:

Þ Vendor information is never repeated, and so time and space are not wasted.

Þ If vendor information changes, you can update a single record, the one in the
vendors table. Data in related tables does not change.

Þ Because no data is repeated, the data used is obviously consistent, making
data reporting and manipulation much simpler.

The bottom line is that relational data can be stored efficiently and manipulated easily
Because of this, relational databases scale far better than nonrelational databases.

-.' . Scale
Able to handle an increasing load without failing. A well-designed database or
application is said to scale well.

Why Use Joins?
As just explained, breaking data into nultþle tables enables more effTcient storage,
easier manipulation, and greater scalability. But these benefits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a single sELEcr
statement?

Creating a Join 109

The answer is to use a join. Simply put, a join is a mechanism used to associate, or
join, tables within a sELECT statement (and thus the name join). By using a special
syntax, you can join multiple tables so that a single set of output is returned, and the
join associates the correct rows in each table on the fly.

Using lnteractive DBMS lools
Understand that a join is not a physical entity; in other words, it does not exist
in the actual database tables. A join is created bythe DBMS as needed, and it
persists for the duration of the query execution.
Many DBMSs provide graphical interfaces that can be used to define taþle
relationships interactively- These tools can be invaluable in helping to maintain
referential ¡ntegrity. When you are using relational tables, it is important that
only valid data ¡s inserted into relational columns. Going back to the example,
if an invalid vendor lD is stored in the products table, those products would be
inaccessible because they would not be related to any vendor. To prevent th¡s
from occurring, you can instruct the database to only allow val¡d values (ones
present in the vendors table) in the vendor lD column in the products table.
Referential integrity means that the DBMS enforces data integrity rules. And
these rules are often managed through DBMS provided interfaces.

GreatinÊ, a Join
Creating a join is very simple. You must specify all the tables to be included and how
they are related to each other. Look at the following example:

$eixg*allt

SELECT wend_name, prod_name, prod3rice
FROM Vendors, Products
UHERE Vendors.vend íd = Products.vend id

#a,xügrnxå r'

vend*name prod_name prod price

Doll House Inc,
lloll. House lnc.
Dôl1 House Inc,
Bears R Us
Bears R Us
Bears R Us
Do]1 House Inc.
Fun and Games
Fun and Games

Fish bean bag toy
Bird bean bag toy
Rabbít bean bag toy
8 inch teddy bear
12 j-nc}] teddy bear
l-8 inch teddy bear
Raggedy Ann
King doI1
Queen do1l

3.4900
3.4900
3.4900
5.9900
8.9900
L1.9900
4 ,9900
9 .4900
9.4900

110 ¡-HSåûh* L2: Joining Tables

Asxæä3,699 '¡¡

Let's take a look at the preceding code. The sELEcr statement starts in the same
way as all the statements you've looked at thus far, by specifying the columns to be
retrieved. The big difference here is that two of the specified columns (procr_name ând
prod3rice) are in one table, whereas the other (vend_name) is in another table.

Now look at the FRoM clause. Unlike all the prior sELEcr statements, this one has
two tables listed in the FRoM clause, vendors and Products. These are the names of
the two tables that are being joined in this sELEcr statement. The tables are correctly
joined with a wHERE clause that instructs the DBMS to match vend id in the vendors
table with vend id ín the products table.

You'll notice that the columns are specified as vendors.venr¡_id âod
Products.vend_id. This fully qualified column name is required here because if
you just specified vend_id, the DBMS cannot tell which ven.r_id columns you
are referring to. (There are two of them, one in each table.) As you can see in the
preceding output, a single sELEcr statement retums data from two different tables.

Fully Qual¡fy¡ng Golumn Names
As noted in the previous lesson, you must use the fully qualified column
name (table and column separated by a period) whenever there is a possible
ambiguity about which column you are referring to. Most DBMSs will return an
error message if you refer to an ambiguous column name without fully qualifying
it with a table name.

The lmportance of the wrrERE Glause
It might seem strange to use a wHuRn clause to set thejoin relationship, but actually,
there is a very good reason for this. Remember, when tables are joined in a snr,pcr
statement, that relationship is constructed on the fly. There is nothing in the database
table definitions that can instruct the DBMS how to join the tables. You have to do
that yourself. When you join two tables, what you are actually doing is pairing every
row in the first table with every row in the second table. The wunRn clause acts as a
filter to only include rows that match the specified filter condition-the join condition,
in this case. V/ithout the wri¡np clause, every row in the first table will be paired with
every row in the second table, regardless of whether they logically go together or not.

Gartes¡an Product
The results returned by a table relationship without a join condition. The number
of rows retrieved will be the number of rows in the first table multiplied by the
number of rows in the second table.

Creating a Join

To understand this, look at the following sELEcr statement and output:

ãnput'o
SELECT vend_name, prod_name, prod3rice
FROM Vendors, Products;

&axtgrnr& "
vend name prod_name prod3rice

ltL

Bears R Us
Bears R Uc
Bears R Us
Bears R Us
Bears R Us
Bears R Us
Bears R IJs
Bears R Us
Bears R Us
Bear Emporíum
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporj.um
Bear Emporium
Bear Emporium
Bear Emporium
Beâr Emporium
Do1l House Tnc
Dol-l House Inc
DolI HouÊe Inc
Doll House Inc
Doll House Inc
Ðo11 lfouÊe Inc
Doll- House fnc
Doll HouEe Inc
Doll HouÊe Inc
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Fun and Games
Fun and games
Fun and Gâmes
Fun and Games

I ínch leddy bear
12 inch teddy bear
1.8 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann
King dol1
Queen dol1
I ínch teddy bear
l-2 inch teddy bear
18 inch teddy bear
Flsh bean bag toy
Blrd bean bag Ëoy
Rabbit bean bag toy
Raggedy Ann
King do11
Queen dol1
I inch teddy bear
12 ínch teddy bear
1.8 inch teddy bear
Fish bean bag Ëoy
Bird bean bag tsoy
Rabbít bean bag toy
Raggedy Ann
King do11
Queen doll
I inch teddy bear
l-2 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann
Ktng do11
Queen doll
I inch teddy bear
12 inch teddy bear
18 j.nch teddy bear
Fish bean bag toy

tr ôô
o oô
t]-.99
3.49
3 .49
3.49
4.99
9 .49
9.49
5 .99
a oo

:.1.99
3.49
3.19
3.49
4 .99
9.49
9.49
5.99
8.99
1L.99
3.49
3.49
? ¿q

4 qq

9,49
9.49
s.99
8.99
11.99
3.49
3 .49
3 .49
4 .99
9.49
9.49
5 .99
a oo

!1_ .99
3.49

t72

Fun and Games
Fun and Games
Fun and Games
Fun and Games
Fun and Games
Jouets et ours
,Jouets et ours
Jouets et ollrs
,louets et ours
Jouets eL ours
Jouets et ours
,louets et ours
Jouets et ours
.fouets et ours

s-Ë$StN å2: Joining Tables

Bird bean bag toy
Rabbít bean bag Èoy
Raggedy Ann
King doll
Queen dol1
I inch teddy bear
12 inch teddy bear
18 ínch Leddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann
King dol1
Queen do11

3 .49
3.49
4 .99
9.49
9.49
5.99
8.99
Ll-.99
3.49
3.49) Áõ

4.99
9.49
9.49

As you can see in the preceding output, the Cartesian product is seldom what you
want. The data retumed here has matched every product with every vendor, including
products with the incorrect vendor (and even vendors with no products at all).

:i.: : I''1' Don't Forget the w¡rrnr Glause
Make sure all your joins have wHsnn clauses; otherwise, the DBMS will return far
more data than you want. Similârly, make sure your WHERË clauses are correct.
An incorrect filter condition will cause the DBMS to return incorrect data.

Grcss Joins
Sometimes you'll hear the type of join that returns a Cartesian Product referred
to as a crossloin.

lnner Joins
The join you have been using so far is called an equijoin-a join based on the testing
of equality between two tables. This kind ofjoin is also called an inner join. In fact,
you lnay use a slightly different sylìtax for thesejoins, spccifying thc type ofjoirr
explicitly. The following sEr,Ecr statement returns the exact same data as an earlier
example:

ä* ----Àq s $6ås,e e

SELECT vend_name, prod_name, pro¡l príce
FROM Vendors
lìJIIEF JOIIiÌ Products ON Vendors.vend id = Products.vend id

Creat¡ng a Join L73

Analysis v
The snr,ecr in the statement is the same as the preceding snr,Ecr statement, but the
rnor'r clause is different. Here the relationship between the two tables is part of the
rRoru clause specified as INNER ¡orn. In this syntax, thejoin condition is specified
using the special ow clause instead ofa wr¡pep clause. The acn¡al conditon passed to
ou is the same as would be passed to wHERE.

Refer to your DBMS documentation to see which syntax is preferred.

rri:,:. lho *Right' SYntax
Per the ANSI SQL specification, use of the INNER JorN syntax is preferred over
the simple equijoins syntax used previously. lndeed, SQL purists tend to look
upon the simple syntax with disdain. That being said, DBMSs do indeed support
both the simpler and the standard formats, so my recommendat¡on is that you
take the time to understand both formats but use whichever you feel more
comfortable with.

Joining Multiple Tables
SQL imposes no limit to ttre number of tables that may be joined in a seÌ,ncr
statement. The basic rules for creating the join remain the same. First, list all the
tables, and then define the relationship between each. Here is an example:

lnput v
SELECT prod_name, vend.i_name, prod3rice, quanÈity
FROM Orderltems, Products, Vendors
WHERE Products.vend_id = Vendors.vend_id

AND Orderltems.prod_id = Products.prod_id
AND order num = 20007;

Sutput w
prod name wend name prodprice quantity

LB inch leddy bear
Fish bean bag toy
Bird bean bag Èoy
Rabbíl bean bag toy
Raggedy Ann

Bears R Us
Dol1 House
Dol-1 House
DolL House
Ðo11 House

Inc
ïnc
Inc
ïnc

L1.9900
3 .4900
3.4900
3 .4900
4 .9900

50
100
100
100
50

1.74 LESS$$${ *ã: Jo¡n¡ng Tables

&*xæËgræ$* ,'

This example displays the items in order number zoooz. Order items are stored in
the orderttems table. Each product is stored by its product ID, which refers to a
product in the products table, The products are linked to the appropriate vendor in
the vendors table by the vendor ID, which is stored with each product record. The
Fnornr clause here lists the three tables, and the wHnes clause defines both of thosejoin
conditions. An additional wHnns condition is then used to filter just the items for order
20007.

i , ,,::rrrrì. Pefofmance Gonsidetations
DBMSs process joins at runtime relating each table as specified. This
process can become very resource intensive, so be careful not to join tables
unnecessarily. The more tables you join, the more performance will degrade.

' \i': ì Ìì r lf,ax¡mum Number of lables in a Join
While it is true that SQL itself has no maximum number of tables per join
restriction, many DBMSs do indeed have restrictions. Refer to your DBMS
documentation to determine what restrictions there are, if any.

Now would be a good time to revisit the following example from Lesson I 1,

"Working with Subqueries." As you will recall, this sELEcr statement retums a list of
customers who ordered product RcANol:

Bsr$¡çså

SELECT cust_name,
FROM Customers
WHERE cust id IN

cust contact

(SELECT cust_id
FROM Orders
WHERE order_num fN (SELECT order_num

FROM Order:Items
WHERE prod_íd = 'RGANOIr));

As mentioncd in Lcsson 11, subqueries arc not always thc most cfficicnt way to pcrform
complex sELEcr operations, and so as promised, here is the same query using joins:

$*r6*tlnÈ ,''

SELECT cust_name. cust_contact
FROM Customers, Orders, Orderltems
WHERE Customers. cust_íd = Orders. cust_id

A¡lD Orderltemg.order_num = Orders.order_num
ir.tìlD prod_id = ìRGANO1ì ;

Summary 115

Scxåpu.xê

cust name cusÈ contacf

Fun4ALl Denise L. stephens
Kim HorTardThe Toy Store

&xnæ*y*rs ':'

As explained in Lesson 11, refuming the data needed in this query requires the use of
three tables. But instead of using them within nested subqueries, here two joins are
used to connect the tables. There are three wspRr clause conditions here. The firsf two
connect the tables in thejoin, and the last one filters the data for product RcANor..

:;r' lt Pîys to Experlment
As you can see, there is often more than one way to perform any given SQL
operation, And there is rarely a definitive right or wrong way. Performance can
þe affected by the type of operation, the DBMS being used, the amount of data
in the tables, whether or not indexes and keys are present, and a whole slew of
other criteria. Therefore, it is often worth experiment¡ng with different select¡on
mechanisms to find the one that works best for you.

i.iai jlr:: Jo¡ned Column Names
ln all of the examples presented here, the columns being joined are named the
same (cust_id in both customers and orders, for example). Having identically
named columns is not a requirement, and you'll often encounter databases that
use different naming conventions. I created the tables this way to make the
examples simpler and clearer.

Summary
Joins are one of the most important and powerful features in SQL, and using them
effectively requires a basic understanding of relational database design. In this lesson,
you learned some of the basics ofrelational database design as an introduction to
leaming about joins. You also leamed how to create an equijoin (also known as an
inner join), which is the most commonly used form of join. In the next lesson, you'll
leam how to create other types ofjoins.

116 C"ESS&N 12: Join¡ng Tables

Ghallenges
1. Write a SQL statement to retum customer name (cust_name) from the

customers table and related order numbers (order nurn) from the orders
table, sorting the result by customer name and then by order number.
Actually, try this one twice-once using simple equijoin syntax and once
using an INNER JorN.

2. Let's make the previous challenge more useful. In addition to returning the
customer name and order number, add a third column named orderTotal
containing the total price of each order. There are two ways to do this: you
can create the orderTotal column using a subquery on the orderÏtems
table, or you canjoin the orderrtems table to the existing tables and use an
aggregate function. Here's a hint: watch out for where you need to use fully
qualified column names.

3. Let's revisit Challenge 2 from Lesson 11. V/rite a SQL statement that
retrieves the dates when product BRor- was ordered, but this time use a join
and simple equijoin syntax. The output should be identical to fhe one from
Lesson I 1.

4. Thaf was fun; let's try it again. Re-create the SQL you wrote for Lesson I I
Challenge 3, but this time using ANSI rtw¡n ;orN syntax. The code you
wrote there employed two nested subqueries. To re-create it, you'll need two
INNER JorN statements, each formatted like the INNER JorN example eadier
in this lesson. And don't forget the wneRp clause to filter by prod_íd.

5. One more, and to make things more fun, we'll mix joins, aggregate
functions, and groupiug too. Ready? Back in Lesson 10 I issued you a

challenge to find all order numbers with a value of 1000 or more. Those
results are useful, but what would be even more useful is the names of
the customers who placed orders of at least that amount. So, write a SQL
statement that uses joins to retum customer name (cust_name) from the
customers table and the total price of all orders fiom the orderrtems table.
Here's a hint: to join those tables, you'll also need to inclucle the orders
table (because customers is not related directly to orderttems, customers
is related to orders, and orders is related to orderrtems). Don't forget
cRoup By and nevtNc, and sort the results by customer name. You can use
simple equijoin or ANSI INNER ,rorN syntax for this one. Or, if you are
feeling brave, try writing it both ways.

treac inÉ Advanced Joins

In this lesson, you'll learn all øbout additional join types-what they are and how
to use them. You'll also leam how to use table aliases and how to use aggregate

functions with joined tables.

usin$ Table Aliases
Before we look at additional types ofjoins, we need to revisit aliases. Back in
Lesson 7 , "Creating Calculated Fields," you learned how to use aliases to refer to
retrieved table columns. The syntax to alias a column (in SQL Server) looks like this:

lnput w
SELECT RTRIM(vend_name) +

AS vend*ti.tle
FROM Vendors
ORÐER BY vend_name;

(' .+ RTRIM (vend_country) r ') '

In addition to using aliases for column names and calculated fields, SQL also enables
you to alias table names. There are two primary reasons to do this:

> To shorten the SQL syntax

Þ To enable multiple uses of the same table within a single srr.ucr statement

Take a look at the following sELEcr statement. It is basically the same statement as an
example used in the previous lesson, but it has been modified to use aliases:

lnput v
SELECT cust_name, cust concact
FROM Custoners AS C, Orders AS o,
V{HERE C.cust_id = O.cust_id

AND OI.order_num = O.order_num
AND prod_id = IRGANOI-';

orderltems AS OI

118 ¡.gSSOA{ 1g; Creating Advanced Joins

Acralysis'.e
You'll notice that the three tables in the rnou clauses all have aliases. cusromers As c
establishes c as an alias for customers, and so on. This approach enables you to use
the abbreviated c instead of the full text customers. In this example, the table aliases
were used only in the wHsRu clause, but aliases are not limiæd to just wnnnn. You
can use aliases in the ssr,ncr list, the oRÐER By clause, and in any other part of the
statement as well.

It is also worth noting that table aliases are only used during query execution. Unlike
column aliases, table aliases are never returned to the client.

Using Different Join Types
Thus far you have used only simple joins known as inner joins or equíjoins. You'll
now take a look at three additionaljoin types: the selfjoin, the naturaljoin, and the
outerjoin.

Self Joins
As mentioned earlier, one of the primary reasons to use table aliases is to be able to
refer to the same table more than once in a single sELEcr statement. An example will
demonstrate this.

Suppose you wanted to send a mailing to all the customer contacts who work for the
same company for which Jim Jones works. This query requires that you first find
out which company Jim Jones works tbr and next which customers work t'or that
compaoy. Tlrc following is oue way to approach tlús problem:

NnPmt tu'

SELECT cust_id, cust*name, cust_contact
FROM Customers
WHERE cust_name = (SELECT cust_name

FROM Customers
WHERE cust contact = ',fim Jones') ;

Output w
cust_íd

l-000000003
1000000004

L000000003
1-000000004

Using Different Join Types

cust contactcust name

Fun4AI1
Fun4AlL

Fun4AJ.l
Fun4A11

Jim alones
Denise L, SÈephens

Analysis v
This first solution uses subqueries. The inner ssl,ncr statement does a simple retrieval
to retum the cust_name of the company that Jim Jones works for. That name is the
one used in the wuan¡ clause of the outer query so that all employees who work for
that company are retrieved. (You learned all about subqueries in Lesson 11, "Working
with Subqueries." Refer to that lesson for more information.)

Now look at the same query using a join:

lnput v
SELECT cl.cust_id, ÇL.cus!_name, cl.cust_contact
FROM Customers AS cL, Customers AS c2
$IHERE cl.cust_name = c2.cust_name

AND c2.Çust_contac! = rJim lTones';

Output v
cust_íd cust name cust contacts

,ïim Jones
Denise L. Stephens

l li:r: No âs ¡n Otaelo
Oracle users, remember to drop the es.

Analysis v
The two tables needed in fhis query are actually the same table, and so the cusromers
table appears in the rao¡¿ clause twice. Although this is perfectly legal, any references
to table cuetomers would be ambiguous because the DBMS does not know which
customera table you are referring to.

To resolve this problem, table aliases are used. The fust occurrence of Cusromers
has an alias of cr, and the second has an alias of cz. Now those aliases can be used
as table names. The ssr,ncr statement, for example, uses the cr prefix to explicitly

t20 å-€s${}ru 13: Creat¡ng Advanced Joins

state the full name of the desired columns. If it did not, the DBMS would return an
error because there are two of each column named cust*id, cust_name, and
cust_contact. It cannot know which one you want. (Even though they are the same.)
The wusns clause firstjoins the tables and then filters the data by cusr_conracr in
the second table to retum only the wanted data.

'1.Ìi:ì SeF Joins Instead of Subquel¡es
Self joins are often used to replace statements using subqueries that retrieve
data from the same table as the outer statement. Although the end result is the
same, many DBMSs process joins far more quickly than they do subqueries. lt
is usually worth exper¡menting with both to determine which performs better.

Natural Joins v
'Whenever tables are joined, at least one column will appear in more than one table
(the columns being used to create the join). Standard joins (the inner joins that you
leamed about in the last lesson) return all data, even multiple occurrences of the same
column. A natural join simply eliminates those multiple occurrences so that only one
of each column is returned.

How does it do this? The answer is it doesn't-you do it. A natural join is a join in
which you select only columns that are unique. This is typically done using a wildcard
(ser,ncr *) for one table and explicit subsets ofthe columns for all other tables. The
following is an example:

ä*lPu¡ ','

SELECT C. *, O.order_num, O.order_date,
OI .prod_id, OI . quantity, OI . itemjrice

FROM Customers AS C, Orders AS O,
orderltems AS oI

WHERE C,cust_id = O.cust_id
AifD OT.or<ler_mrm = O-order_nlm
Àh]D prod íd = 'RGANO]-I ;

r'ri: no ts in oracle
Oracle users, remember to drop the As

Amalysis
In this example, a wildcard is used for the first table only. All other columns are
explicitly listed so that no duplicate columns are retrieved.

ü

Using Different Join Types t2t

The truth is, every inner join you have created thus far is actually a natural join, and
you will probably never need an inner join that is not a natural join.

Outer Joins
Most joins relate rows in one table with rows in another. But occasionally, you
want to include rows that have no related rows. For example, you might use joins to
accomplish the following tasks:

Þ Count how many orders were placed by each customer, including customers
that have yet to place an order.

> List all products with order quantities, including products not ordered by
anyone.

Þ Calculate average sale sizes, takjng into account customers that have not yet
placed an order.

In each of these examples, the join includes table rows that have no associated rows in
the related table. This type ofjoin is called an outerjoin.

C¡\l.-tl lüÍtl : Syntax Differences
It is important to note that the syntax used to create an outer join can vary
slightly among different SQL implementations. The various forms of syntax
described ¡n the following section cover most implementat¡ons, but refer to your
DBMS documentation to verify its syntax before proceeding.

The following sELECT statement is a simple inner join. It retrieves a list of all
customers and their orders:

lnput w
SELECT CusÈomers,cust íd, Orders.order num
FROM Customers

INNER JOIN Orders ON Customers.cusl id ", Orders.cust id;

Outer join syntax is similar. To retrieve a list of all customers including those who
have placed no orders, you can do the following:

lnput w
SELECT Customers.cust id, Orders.order num
FROM Customers
LEFT OUTER .IOIN Orders ON Customers.cust id * Orders^cust id;

122 iì"È,S$úÈri å3i Creating Advanced Joins

ffiueÈpax{ ''
cust íd

1000000001
1000000001
1000000002
1000000003
1000000004
100000000s

order num

20005
20009
NULL
20006
20007
20008

&mæË3r*xm '

Like the inner join seen in the last lesson, this SELECT statement uses the keywords
ourER JorN to specify thejoin type (instead of specifying it in the wurnr clause). But
unlike inner joins, which relate rows in both tables, outer joins also include rows with
no related rows. When using ournn JorN syntax, you must use the RrcHT or LEFT
keywords to specify the table from which to include all rows (nrcut for the one on
the right of oursn ¡orr¡ and r.prr for the one on the left). The previous example uses
LEFT ourøR ,JorN to select all the rows from the table on the left in the rRo¡¡ clause
(the cusromers table). To select all the rows from the table on the right, you use a
RrcHT ourER ,JorN as seen in this next example:

$mgaaet ,r'

SELECT Cuslomers.cust id, Orders-order num
FROM Customers

R.icHT' OLIT'EË" JOll{ Orders ON Customers"cust id = Orders.cust id;

SQLite Outer Joins
SQLite supports LEFT ourER JorN, but not Rrcr{T ourER JorN. Fortunately, if
you do need Rrcnr ouruR .rorN funct¡onal¡ty in SQLite, there is a very simple
solution as will be explained ¡n the next tip.

Outer Join Types
Remember that there are always two basic forms of outer joins-the left outer
join and the right outer join. The only difference between them ¡s the order of
the tables that they are relating. ln other words, a left outer join can be turned
into a right outer join simply by reversingthe order of the tables in the rnou or
wnsRe clause. As such, the two types of outerjoin can be used interchangeably,
and the decision about which one is used is based purely on convenlence.

Using Joins with Aggregate Functions

There is one other variant ofthe outerjoin, one that tends to be rarely used. The full
outerjoin retrieves all rows from both tables and relates those that can be related.
Unlike a left outer join or right outer join, which includes unrelated rows from a single
table, the full outer join includes unrelated rows from both tables. The syntax for a full
outer join is as follows:

lnput v
SELECT Customers.cust id, Orders.order num
FROM CusEomers
FULL OUTER JOIN Orders ON Customers.cust id = Orders.cust id;

illlì.i liíli'l: FI'rIJ our'R uorr Support
ïhe ruli* ournR .rorN syntax ¡s not supported by MariaDB, MySQL, or SQLite

Usingf Joins with Atl¡fre$ate Functions
As you leamed in Lesson 9, "Summarizing Data," aggregate functions are used to
summarize data. Although all the examples of aggregate functions thus far only
summarized data from a single table, these functions can also be used with joins.

To demonstrate this, let's look at an example. You want to retrieve a list of all
customers and the number of orders that each has placed. The following code uses
the couNr o function to achieve this:

lnput v
SELECT Customers. cust_id,

couNT(Orders.order num) AS num ord
FROM Customers

II'INER JOIN Orders ON Customers.cust_id = Orders.cust_id
GROUP BY Customers.cust id;

Ouüput"qr
cust id num ord

t23

r.000000001
1000000003
1000000004
L00000000s

2
L
1

1

t24 LESSON L3: Creating Advanced Joins

Analysis w

This s¡r,rct statement uses INNER ,lorN to relate the cusÈomers and orders tables
to each other. The cRoup By clause groups the data by customer, and so the function
call couut (orders . order num) counts the number of orders for each customer and
retums it as num_ord.

Aggregate functions can be used just as easily with other join types. See the following
example:

lnput w
SELECT Customers.cusL_id,

COUNT(Orders.order num) AS num ord
FROM Customers

LEFT OUTER JOTN Orders ON Custoners.cust id
GROUP BY Customers"cust id;

orders cust id

Output w
cust_id num ord

1000000001
r_000000002
1000000003
1000000004
r_000000005

Analysis ow

This example uses a left outer join to include all customers, even those who have
not placed any orders. The results show that customer 1000000002 with o orders is
included this time, unlike when the INNER ,rorn was used.

Using Joins and Join Gonditions
Before I wrap up our two-lesson discussion on joins, I think it is worthwhile to
summarize some key points regarding joins and their use:

> Pay careful attention to the type of join being used. More often than not,
you'll want an innerjoin, but there are often valid uses for outerjoins too.

2
0
l-
L
L

Summary 125

> Check your DBMS documentation for the exact join syntax it supports.
(Most DBMSs use one of the forms of syntax described in these two
lessons.)

> Make sure you use the correct join condition (regardless of tåe syntax being
used), or you'll retum incorrect data.

> Make sure you always provide a join condition, or you'll end up with the
Cartesian product.

Þ You may include multþle tables in a join and even have different join types
for each. Although this is legal and often useful, make sure you test each join
separately before testing them together. This will make troubleshooting far
simpler.

Summary
This lesson was a continuation ofthe last lesson onjoins. This lesson started by
teaching you how and why to use âliases, and then continued with a discussion on
different join types and various forms of syntax used with each. You also learned how
to use aggregate functions with joins and some important do's and dont's to keep in
mind when working with joins.

L

126 LËS$ON 1g: Creating Advanced Joins

Ghallengles
1. Write a SQL statement using an INNER ,JorN to retrieve customer name

(cust_name in customers) and all order numbers (order_num in orders)
for each.

2. Modify the SQL statement you just created to list all customers, even those
with no orders.

3. Use an ourøR ':orw to join the products and orderrtems tables, retuming
a sorted list ofproduct names (prod_name) and the order numbers
(order_num) associated with each.

4. Modify the SQL statement created in the previous challenge so that it retums
a total of number of orders for each item (as opposed to the order numbers).

5. Write a SQL statement to list vendors (vend,id in vendors) and the number
of products they have available, including vendors witl no products. You'll
want to use an ourER ¡orn and the couNr O aggregate function to count the
number ofproducts for each in the products table. Pay attention: the
vend_id column appears in multiple tables, so any time you refer to it,
you'll need to tully qualify it.

GormbininÊl Queriles

In this lesson, you'll learn how to use the rJNroN operator to combine multiple sELEcr
statements into one result set.

UnderstandinÉl Gombined Queries
Most SQL queries contain a single sELECT statement that retums data from one or
more tables. SQL also enables you to perform multiple queries (multiple sELECT
statements) and retum the results as a single query result set. These combined queries
are usually known as uníons or compounà. queríes.

There are basically two scenarios in which you'd use combined queries;

> To return similarly structured data from different tables in a single query

Þ To perform multiple queries against a single table refuming the data as one
query

iiil: CombininÉ eueries and Multiple wHsns Gonditions
For the most part, combining two queries to the same table accomplishes the
same thing as a single query with multiple wsnen clause conditions. ln other
words, âny sELEcr statement with multiple w¡rsen clauses can also be specified
as a combined query, as you'll see in the section that follows.

Greating Gombined Queries
SQL queries are combined using the uNroN operator. Using LrNroN, you can specify
multiple sEi,ECT statements, and their results can be combined into a single result set.

Using nNroN
Using utrom is simple enough. A1l you do is specify each ser,pcr statement and place
the keyword u¡trom between each.

128 tESS(}N !.4: Combin¡ng Queries

Let's look at an example. You need a report on all your customers in lllinois, Indiana, and
Michigan. You also want to include all run¿arl locations, regardless of state. Of course,
you can create a wHERE clause that will do this, but this time you'll use a uurou instead.

As just explained, creating a uNroN involves writing multiple sELEcr statements.
First, look at the inclividual statements:

lnput v
SELECT cusL_name, cust_contacÈ
FROM Cuslomers
WHERE cust_state IN ('ILr, rJNr

cust_email

,MT') ;

Output v
cusf_name

VíI1age Toys
Fun4All
The Toy Store

cust name

Fun4A]1
Fun4All-

cust_contact cust_email

,John Smith
.fim ,fones
Kim ¡Iorrard

salesovi I lagetoys . com
j jonesofun4all . com
NULL

cust email

lnput v
SELECT cust_name, cust_contact, cust_emai1
FROM Customers
WHERE cust name = 'Fun4A11' ;

Output v
cust contact

,fim .fones
Denise L. Stephens

j jones@fun4al1 . com
dstephens@f un4a11 . com

Analysis v
The first srr.Ecr retrieves all rows in lllinois, Indiana, and Michigan by passing those
state abbreviations to dre tu clause. Tlre second SELECT uses a sirrrple equality test to
find all Fun4A11 locations. You'll notice that one row appears on both outputs as it
meets both w¡¡nee conditions.

(

Creating Combined Queries

To combine these two statements, do the following:

lnput v

129

SELECT cust_name, cust contâct,
FROM Customers
WHERE cusÈ_state fN 1 t 1¡t , 'IN' ,

UNION
SELECT cust_name, cust_contact,
FROM Customers
WHERE cust_name ='Fun4A11¡ ¡

Output v
cust_name cust_contact cusl_emai1

dstephens@f un4a1 1 . com
j jonesøfun4a11 . com
sales@vi I lagetoys . com
NULL

Fun4A11
Fun4Ali
víllage Toys
The Toy Slore

Denise L. stsephens
itím ,Jones
itohn Sûùith
Kim Howard

cust_emaí1

'MI')

cust_emai1

cust_emaí1

'Mr')

cust_emai.1

Analysis v
The preceding statements are made up of both of the previous sELEcr statements
separated by the unrou keyword. urqroN instructs the DBMS to execute both s¡r,ecr
statements and combine the ouþut into a single query result set.

As a point of reference, here is the same query using multiple wuene clauses instead
of a inrrou:

lnput v
SELECT cust_name, cust contact,
FROM Customers
WHERE cust_stale IN ('IL',rIN'/
UNTON
SELECT cust_name, cust_contact,
FROM Customers
I^IHERE cust name = 'Fun4A11';

t,

t

t

130 !"åäs$ûi{ ßs: Combin¡ng Queries

In our simple example, the uNroN might actually be more complicated than using
a wHERE clause. But with more complex filtering conditions, or if the data is being
retrieved from multiple tables (and not just a single table), the r¡mrox could have made
the process much simpler indeed.

ii; nNroN Limits
There is no standard SQL limit to the number of sELEcr statements that can
be combined with uvrou statements. However, it is best to consult your DBMS
documentation to ensure that it does not enforce any maximum statement
restrict¡ons of its own.

i:ì;\ijl iûfi: Peformance lssues
Most good DBMSs use an internal query optimizer to combine the SELECT
statements before they are even processed. ln theory, this means that from a
performance perspective, there should be no real difference þetween using mul-
tiple wxnee clause conditions or a uNroN. I say in theory, because, in practice,
most query optimizers don't alwâys do as good a job as they should. Your best
bet is to test both methods to see which will work best for you.

I]NTON RUIES
As you can see, unions are very easy to use. But there are a few rules governing
exactly which can be combined:

Þ A uxror must be composed of two or more sErJEcr statements, each
separated by the keyword m¡rom (so, if you're combining four ssr,scr
statements, you would use three uxrou keywords).

> Each query in a uNroN must contain the same columns, expressionso or
aggregate functions (and some DBMSs even require that columns be listed in
the same orde.r).

Þ Column datatypes must be compatible. They need not be the same name or
the exact same type, but they must be of a type that the DBMS can implicitly
converl (t'or example, difïêrent numeric types or ditT'erent date types).

Creating Combined Queries 131

NüTF: msroN Golumn llames
lf sei,scy statements that are combined with a uNroN have different column
namesr what name is actually returned? For example, if one statement
contained sELEcT pro.i name and the next used sELEcT productname, whât
would be the name of the combined returned column?
The answer is that the first name is used, so in our example the combined
column would be named prod_name, even though the second sELEcr used a
different name. This also means that you can use an alias on the first name to
set the returned column name as needed.
This behevior has another interesting s¡de effect. Because the first set of
column names âre usçd, only those names can be specified when sorting.
Again, in our example, you could use oRDER By prod*nane to sort the com-
bined results, but oRDER By producrnarne would display an error message
because there is no column producrname in the combined results.

Aside from these basic rules and restrictions, unions can be used for any data retrieval
tasks.

lncludinÉ or Eliminating Duplicate Rows
Go back to the preceding section titled "Using uNroN" and look at the sample snr,Ecr
statements used. You'll notice that when executed individually, the first sEr,Ecr state-
ment fetums three rowso and the second sELEcT statement returns two rows. However,
when the two sELEcr statements are combined with a uxroN, only four rows are
retumed, not five.

The uw¡or¡ automatically removes any duplicate rows from the query result set (in
other words, it behaves just as multiple wusns clause conditions in a single sELECT
would). Because there is a Fun4All location in Indiana, that row was returned by both
srr.Ecr statements. When the uNroN was used, the duplicate row was eliminated.

This is the default behavior of urrom, but you can change it if you so desire. If you
would, in fact, want all oçcurrences of all matches refumed, you could use uNroN ALL
instead of uwror¡.

Look at the following example:

lnput v
SELECT cusL_name, cugt_contact,
FROM Customers
WHERE cuEt_state Ii.¡ (| ILr , I INr ,

UNION ALL
SELECT cust_name, cust_contace,
FROM Customers
WHERE Cust name = 'Fun4Al-l r

,'

cust_email

IMTI)

cust emai-l

ffiW
132

Output v
cust name

Village Toys
Fun4A11
The Toy Store
Fun4A11
Fun4AlL

LESSON 14: Combining Queries

cust contact

,fohn Smith
úr-m Jones
Kim llo$¡ard
Jim itones
Denise L. stephens

cus! email

sales@vil-1agêtoys. com
j jonesofun4all . com
NTJLL
j jones@fun4al1 . com
dstephens@fun4a11 . com

{i

Analysis v
When you use uNroN ArL, the DBMS does not eliminate duplicates. Therefore, the
preceding example returns five rows, one of them occurring twice.

Sorting Gombined Query Results
SELECT statement output is sorted using the onoen ey clause. When combining que-
ries with a uNroN, you mây use only one oRDER ey clauseo and it must occur after the
final srr,sct statement. There is very little point in sorting part of a result set one way
and prift'ãiiétfräí'rtiiÍiãrü.tô' å'fiãþlä dóËtË'y tlärifes åið höï'ålËîièl*"
The following example sorts tlte results retumed by the previously used u¡¡row:

lnput v
SELECT cust_nånìe, cust_corltâcL/ cusL_ëùì¿rj.1
FROM Customers
WHERE cust_state rN (I IL" ' IN' , t¡41 t ¡

UNfON
SELECT cust_name, cust_contact, cust_emai1
FROM Customers
WÍERE cust_nane = rFun4Al1l
ORDER BY cust name, cust contact;

Summary 133

Output v
cust. name

Fun4AlI
Fun4A11
The Toy Store
Village Toys

cust conuact

Denise, L. Stephens
,fim Jones
Kím Howard
,John Sfnith

cust email

dstephensof un4al 1 . com
jjonesefun+a11.com
NULL
sales@vi 1 lagetoys . com

Analysis v
This u¡l¡ox takes a single onoen ev clause after the final seT,pcr statement. Even
though the oeoee By appears to be a part ofonly that last SELECT statement, the
DBMS will in fact use it to sort all the results returned by all the sELEcr statements.

NOTE: Other urrou Typee
Some DBMSs support two additional types of nNroN. ExcEpr (sometimes called
uruus) can be used to retrieve only the rows that ex¡st in the first table but not
in the second, and rNrERSEcr can be used to retrieve only the rows that exist
in both tables. ln practice, howeveq these t¡sro¡¡ types are rarely used because
the same results can be accomplished using joins.

TIP: Worfüng with Multiple Tables
For simplicity's sake, the examples in this lesson have all used uqrou to com-
bine multiple queries on the same table. ln practice, urrou is really useful when
you need to combine data from multiple tables, even tables with mismatched
column names, in which: case you can combine urrow with aliases to retrieve a
single set of results.

Summal,y
In this lesson, you leamed how to combine sELEcr statements with the urrox
operator. Using tavrou, you can retum the results of multiple queries as one combined
query, either including or excluding duplicates. The use of uirorq can greatly simplify
complex wirsRs clauses and retrieval of data from multiple tables.

134 LESSoN 14r Combining Queries

Ghallen!3es
1. Write a SQL statement that combines two sur.Ecr statements that retrieve

product ID (prod_id) ând quantity from the orderrtems table, one
filtering for rows with a quantity of exactþ roo, and the other filtering for
products with an ID that begins with BNBc. Sort the results by product D.

2. Rewrite the SQL statement you just created to use a single srr,ucr statement.

3. This one is a little nonsensical, I know, but it does reinforce a note earlier
in this lesson. Write a SQL statement which retums and combines product
name þrod_name) from Products and customer name (cust_name) from
cusromerso and sort the resultby product name.

4. What is wrong with the following SQL staæment? (Iry to figure it out
without running it.)

SEIJECT cust_name, cuaÈ_contact, cust_emai1
FROM Cust,omers
S¡HERE cust state = rMIr
ORDER BY cust_name;
UNÏON
SELECT cust_name, cust_contact, cust_emai1
FROM Customers
WHERE cust_state = tIL,ORÐER BY cust_namei

:

tffiss$N g5

lnserting Data

In thís lesson, you will leøm how to insert døta into tables usíng the SQI rnsnnr
stcttement.

Understand¡ng Data lnsertion
sELEcr is undoubtedly the most frequently used SQL statement (which is why the
last 14 lessons were dediçated to it). But there are three other frequently used SQL
statements that you should leam. The first one is rttsuRt. (You'll get to the other two
in tle next lesson.)

As its name suggests, rNsERr is used to insert (add) rows to a database table. Insert
can be used in several ways:

) Inserting a single complete row

Þ Inserting a single partial row

> Insefing the results of a query

Let's now look at each of these.

I

136 LESSON 15: lnserting Data

lnsertin€l Gomplete Rows
The simplest way to insert data into a table is to use the basic rNsERr syntax, which
requires that you specify the table name and the values to be inserted into the new
row. Here is an example of this:

lnput v
ÏNSERT INTO Customers
vAl,uES (1000000006,

'Toy Land',
tL23 Any Streetr ,
INevr Yorkt ,

INYI,
| L1-L1_t' ,

NULL,
NULI,)

'

Analysis v
The above example inserts a new customer into the customers table. The data to be
stored in each table column is specified in the ve¡,ues clause, and a value must be
provided for every column. If a column has no value (for example, the cust_contact
and cust_email columns above), the rquLr, value should be used (assuming the table
allows no value to be specified for that column). The columns must be populated in
the order in which they appear in the table definition.

Althr-rugh tlús syntax is ildeed sinple, it is uot at all safe arld should generally be
avoided at all costs. The above SQL statement is highly dependent on the order in
which the columns are defined in the table. It also depends on information about
that order being readily available. Even if it is available, there is no guarantee that
the columns will be in the exact same order the next time the table is reconstructed.
Therefore, writing SQL statements that depend on specific column ordering is very
unsafe. If you do so, something will inevitably break at some point.

However, it is good practice to provide this keyword even if it is not needed.
Doing so will ensure that your SQL code is portable between DBMSs.

n some SQL implementations, the TNTO

TIP: The rxro Keyword

Understanding Data lnsertion 137

The safer (and unfortunately more cumbersome) way to write the TNSERT statement is
as follows:

lnput v
INSERT INTO Customers (cust id,

cust name,
cust_address,
cust_city,
cust_state,
cust_zíp,
cust_country,
cust_contact,
cust_emaíf)

VALUES (1000000006,
'Toy Land',
rl-23 Any Streett ,
tNe\4r York',
INYI,
|]_LL1l-' ,
IUSAI,
NULL,
NULL) ;

Analysis v
This example does the exact same thing as the previous rNsERr statement, but this
time the column names are explicitly stated in parentheses after the table name. When
the row is inserted, the DBMS will match each item in the columns list with the
appropriate value in the veruss list. The first entry in ver,uss corresponds to the first
specified column name. The second value corresponds to the second column name,
and so on.

Because column names ¿tre provided, the ver,ups must match the specified column
names in the order in which they are specified, and not necessarily in the order that
the columns appeff in the actual table. The advantage of this is that, even if the table
layout changes, the tnsrRr statement will still work correctly.

NOTE: Gan't rNsERr Same Record Twice
lf you tried both versions of this example, you'll have discovered that the second
generated an.error because a customer with an lD of r,ooooooooe already
existed. As discussed in Lesson 1, "Undefstanding SQL," primary key values
must be unique, and þecause cusr-id is the primary key, the DBMS won't allow
you to insert two rows with the same cusr_id value. The same ís true for the
¡ext e¡ampfg: To try tle qther rNsERr statements, you'd need to detete the first
row added (as will be shown in the next Lesson). Or don't, because the row has
been inserted and you can continue the lessons without deleting ¡t.

LESS(}N 15: lnserting Data

The following rNsERr statement populates all the row coluryms (ust as before), but it
does so in a different order. Because the column names are specified, the insertion will
work correctly:

lnput v
INSERT INTO Customers (cust íd,

cusÈ contact,
cusÈ_emai.1,
cugt_name,
cust_address,
cust_ciËy,
cust_state,
cr¡st_zip)

vArruEs (1000000006,
¡! !J!!,

NULI.,
'Toy Land',
r123 Any Street' ,

'New York',
'NY',
' Ll"Lx1') ;

lnserting Partial Rows
As I just explained, the recommended way to use rNsERr is to explicitly specify table
column names. Using this syntax, you can also omit columns. This means you provide
values for only some columns, but not for others.

OOCUí;., '| ,., '

List

probâbility that yÖur SQL

Understanding Data lnsertion

Look at the following example:

lnput v
INSERT INTO Customers (cust id,

cugt_name,
cust_address,
cust_city,
cust_sfate.
cust_zip,
cust_count.ry)

vALrJEg (1000000006,
'Toy Landr,
r1"23 Any Streetr ,

'Nevr York' ,
talvt

' 11111 r ,
tTtqÀt\

Analysis v
In the examples given earlier in this lesson, values were not provided for two of the
columns, cust_contact and cust_email. This means there is no reason to include
those columns in the TNSERT statement. This rxsenr statement, therefore, omits
the two columns and the fwo corresponding values.

139

the default

INSERT if the

t

t

I

140 LESSON 15: lnserting Data

lnserting Retrieved Data
rNsERr is usually used to add a row to a table using specified values. There is another
form of rNsERr that can be used to insert the result of a sB¡,ncr statement into a
table. This is known as TNSERT sEr,ECr, and, as its name suggests, it is made up of
an TNSERT statement and a seLecr statement.

Suppose you want to merge a list of çustomers from another table into your
cusromers table. Instead of reading one row at a time and inserting it with INSERT,
you can do the following:

lnput v
INSERT TNTO Cust.omers (cust id,

custlcontact,
cust_emai1,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

SELECT cust_id,
cust_contact,
cust_emai1,
cust_name,
cust_address,
cust_cíty,
cust_state,
custs_zip,
cust_count'ry

FROM CustNewj.. ,. .:.,.,,.

The following example ¡mports data from a table named cusrNew into the

tNer¡rformat of

key values âre

cusiomèrs taþlè. To try this

customers. (The
duplicated,)

tablo

Copy¡ng from One Table to Another 14r

Analysis v
This example uses rNsERr snr,Ecr to import all the data from cusrNe$, into
cusromers. Instead of listing the ver,urs to be inserted, the srr,ncr statement
retrieves them from cusrNerr. Each column in the srr,ecr corresponds to a column in
the specified columns list. How many rows will this statement insert? That depends
on how many rows are in the cusrNeu, table. If the table is empty, no rows will be
inserted (and no error will be generated because the operation is still valid). If the
table does, in fact, contain data, all tlat data will be inserted into custsomers.

TIP: Golumn Names in txsenr sEr,Ecr
This example uses the same column names in both the rmssnr and sELEcr
statements for simplicity's sake. But there is no requirement that the column
names match. ln fact, the DBMS does not even pay attention to the column
names returned by the ser,ucr. Rather, the column position is used, so the
first column in the sELEcr statement (regardless of its name) will be used to
popufate the first specified table column, and so on.

The ser,rcr statement used in an TNSERT sELEcr can include a wHERE clause to filter
the data to be inserted.

TIP: lnserting *lult¡ple Rows
ïNsERT usually inserts only a single row. To insert multiple rows, you must
execute multiple rNsERr statements. The exception to thls rule is rNssRt
sELEcr, which can be used to insert multiple rows w¡th a single statement;
whatever the sei,ecr statement returns will be inserted þy the rNSERr.

Gopying from One Table to Another
There is another form of data insertion that does not use the rl¡sper statement at all.
To copy the contents of a table into a brand new table (one that is created on the fly),
you can use the cREATE sELEcr statement (or ser,uct rrro ifusing SQL Server).

NOTE: Not Supported by DB2
DB2 does not support the use of cnsers sELEcr as described here

Unlike rNsERr sELEcr, which appends data to an existing table, cnuaru sELEcr
copies data into a new table (and, depending on the DBMS being used, can overwrite
the table if it already exists).

t42 LESSON 15: lnserting Data

The following example demonstrates the use of cnsers sELEcr:

lnput v
CREATE TABLE Custcopy AS SELECT * FROM Customers,'

If using SQL Server, use this syntax instead:

lnput v
SELECT * INTO Custcopy FROM Cust,omerst

Analysis v
This snr,scr statement creates a new table named cust,Copy and copies the entire
contents of the customers table into it. Because sELEcr * was used, every column in
tlte customers table will be created (and populated) in the custcopy table. To copy
only a subset of the available columns, you can specify explicit column names instead
of tlte n wildcard character.

Here a¡e some things to consider when using sELECT rNTo:

> Any sEIrEcr options and clauses may be used, including wunRn and cRoup By.

> Joins may be used to insert data from multiple tables.

> Data may only be inserted into a single table regardless of how many tables
the data was retrieved from.

Summany
In this lesson, you learned how to insert rows into a database table using rNsERr.
You learned several ways to use TNSERT and why explicit column specification is
preferred. You also learned how to use TNSERT sELEcr to import rows from another
table and how to use ser,Ecr rNTo to export rows to a new table. In the next lesson,
you'll learn how to use upDArE and osÍ,uts to further manipulate table data.

i

(

143Challenges

Ghallenfles
1. Using rNsERr and columns specified, add yourselfto the cusromers table.

Explicitly list the columns you are adding and only the ones you need.

2. Make backup copies of your orders and orderrteme tables.

if,
i

i,i (

i

i

(

(

(

\

(,

I

I

L,
(.
(_,-

t

LESSON 16

Updating and Deleting Data

i

\

\.u

i

t.

In this lesson, you will learn how to use the upDATE and oal.nîn statements to enable
you tofurthcr mnnipulate your table data.

Updating Data
To update (modify) data in a table, you use the upoeru statement. upDArE can be used
in two ways:

> To update specific rows in a table

> To update all rows ir¡ a table

You'll now take a look at each of tlese uses.

The upoetn statement is very easy to use-some would say too easy. The basic
format of an UeDATE statement is made up of three parts:

> The table to be updated

> The column names and their new values

>-.ï!" filt"lqonditio.n thatdeærmines which rows should be uplated

146 ¿"çSgi{1"ìà\ 3",i3 Updating and Deleting Data

Let's take a look at a simple example. Customer 100000000s has no email address on
file and now has an address, so that record needs updating. The following statement
performs this update:

lnput v
UPDATE Customers
SET cust_email ='kimcothetoystore.com'
WHERE cust_i,d - 1000000005;

The upoarr statement always begins with the name of the table being updated. In this
example, it is the cusromers table. The ser command is then used to assign the new
value to a column. As used here, the set clause sets the cust email column to the
specified value:

SET cust email = 'kim(qthetoystore.com'

The uppern statement finishes with a wgeBe clause that tells the DBMS which row to
update. Without a wHERE clause, fhe DBMS would update all the rows in the
cusromers table with this new email address-definitely not the desired outcome.

Updating multiple columns requires a slightly different syntax:

lnput v
UPDATE Customers
SET cust contsact = 'Sam Roberts' ,

cust_email ,= ' sam@toyfand . com '

WHERE cust id = 1000000006;

When you are updafing multiple columns, you use only a single set command, and
each corumn = value pair is separated by a comma. (No comma is specified after the
last column.) In this example, columns cust_contact ârrd cust-emaí1 will both be

updated for customer r"oo0000006.

TIP; Us¡nÉi Subqüer¡es in an upp¡re Statement
Subqueries may be used in upDArE statements, enabling you to update columns
with data retrieved with a sELEcr statement. Refer to Lesson 11, "Working with
Subqueries," for more information on subqueries and their uses.

TIF: The rnou Keyword
Some SQL implementations support a FRoM clause in the uppers statement
that can be used to update the rows in one table with data from another table.
Refer to your DBMS documentat¡on to see if it supports this feature.

Deleting Data L47

To delete a column's value, you can set it to nur.l (assuming the table is defined to
allow rsur.L values). You can do this as follows:

lnput V
UPDATE Customers
SET cust.-emaiI = NULL
WHERE cuEt id = 1000000005;

Here the NvLL keyword is used to save no value to the cusr_emai1 column. That
is very different from saving an empty string. An empty string (specified ur r r) is a
value, whereas NULL means that there is no value at all.

DeletinEl Data
To delete (remove) data ftom a table, you use the DELETE statement. our,sre can be
used in two ways:

> To delete specific fows from a table

> To delete all rows from a table

Now let's take a look at each of these.

I already stated that upÐAre is very easy to use. The good (and bad) news is that
DELETE is çven easier to use.

The following statement deletes a single row from the cueromers table (the row you
added in the last lesson):

lnput v
DELETE FROM CuSTomerE
WHERE cust_id = 1000000006;

148 F-ia.-Ë.Ës)ru :!.-{ä,: Updating and Delet¡ng Data

This statement should be self-explanatory. DELETE rRorvr requires that you specify the
name of the table from which the data is to be deleted. The wHrns clause filters which
rows are to be deleted. In this example, only customer 1000000006 will be deleted. If
the wueRs clause were omitted, this statement would have deleted every customer in
the table!

TIP: Forei¡þ Keys AÌe Your Friend
Joins were introduced in Lesson 12, "Joining Tables," and as you learned then,
to jo¡n two tables, you simply need common fields in both of those tables. But
you can also have the DBMS enforce the relationship by using fore¡gn keys.
(These are defined in Appendix A, "Sample Table Scripts.") When foreign keys
are present, the DBMS uses them to enforce referential integrity. For example, if
you tried to insert a new product into the producrs table, the DBMS would not
allow you to ¡nsert it with an unknown vendor lD because the vend_id column is
connected to the vendors table as a foreign key. So what does this have to do
with oeT,srs? Well, a nice side effect of using foreign keys to ensure referential
integrity is that the DBMS usually prevents the deletion of rows that are needed
for a relationship. For example, if you tried to delete a product from products
that was used in ex¡sting orders in orderrrems, that DELETE statement would
throw an error and would be aborted. That's another reason to always define
your foreign keys.

TIP: The rnou Keyword
ln some SQL implementations, the FROM keyword following ÐELETE is optional.
However, it is good practice to always provide this keyword, even ¡f it is not
needed. Do¡ng this will ensure that your SQL code is portable between DBMSs

DELETE takes no column names or wildcard characters. DELETE deletes entire rows,
not columns. To delete specific columns, you use an UeDATE statement.

NOTE: Table Gontents, Not Tables
The pnr,urr statement deletes rows from tables, even all rows from tables. But
DELETE never deletes the table itself.

TIP: Faster Deletes
lf you really do want to delete all rows from a table, don't use DELETE. lnstead,
use the TRUNCATE IABLE statement, which accomplishes the same th¡ng but
does it much quicker (because data changes are not logged).

Summary

Guidelines for Updating and
Deleting Data
The uppat¡ and ¡sLere statements used in the previous section all have wnsne
clauses, and there is a very good reason for this. If you omit the wnsRs clause, the
upDArE or DELETE will be applied to every row in the table. In other words, if you
execute an UeDATE without a wr{ERE clause, every row in the table will be updated
with the new values. Simitrarly, if you execute DELETE without a vvr{ERE clause, all the
contents of the table will be deleted.

Here are some importRnt guidelines that many SQI , programmers follow:

Þ Never execute an UeDATE or a DET,ETE without a wlrERE clause unless you
really do intend to update and delete every row.

> Make sure every table has a primary key (refer to Lesson 12 if you have
forgotten what this is), and use it as the wneR¡ clause whenever possible.
(You may specify individual primary keys, multiple values, or value ranges.)

> Before you use a wHsRE clause with an UIDATE or a DELETE, first test it with
a sELEcr to make sure it is filtering the right records; it is far too easy to
write incorrect WHERE clauses.

) Use database-enforced referential integrity (refer to Lesson 12 for this one
too) so that the DBMS will not allow the deletion of rows that have data in
other tables related to them.

Þ Some DBMSs allow database administrators to impose restrictions that
prevent the execution of uppers or DELETE without a l'lr{ERE clause. If your
DBMS supports this feature, consider using it.

The bottom line is that SQL has no Undo button. Be very careful using ueoare and
ÐEr,ErE, or you'll find yourselfupdating and deleting the wrong data.

Summary
In this lesson, you leamed how to use the UeDATE and psr,ers statements to
manipulate the data in your tables. You learned the syntax for each of these
statements, as well as the inherent dangers they expose. You also leamed why
wrsRr clauses are so important in upÐATE and oer,ese statements, and you were given
guidelines that should be followed to help ensure that data does not get damaged
inadvertently.

149

t

(

150 LESSoN 16: Updating and Deleting Data

Ghalleng¡es
1. USA state abbreviations should always be in uppercase. Write a SQL

statement to update all USA addresses, both vendor states (vend-state in
vendors) and customer states (cust_etate in customers), so that they are

uppefcase.

2. Lesson 15 Challenge I asked you to add yourself to the Customers table.
Now delete yourself. Make sure to use a wuens clause (and test it with
a sELEcr before using it in oer,ure), or you'll delete all customers!

tEssoN *7
Greating and Manipulating
Tables

In this lesson, you'll learn the basics of table creation, alteration, anà deletíon.

Greating Tables
SQL is not used just for table data manipulation. Rather, SQL can be used to perform
all database and table operations, including t}te creation and manipulation oftables
themselves,

There are generally two ways to create database tables:

> Most DBMSs come with an administration tool that you can use to create
and manage database tables interactively.

> Tablcs may also be manipulated directþ with SQL statements.

To create tables programmatically, you use the capers raer,a SQL statement. It is
worth noting that when you use interactive management tools, you are actually using
SQL statements. Instead of your writing these statements, however, the interface
generates and executes the SQL seamlessly for you (the same is true for changes to
existing tables).

Complete eoverage of all the options available when creating tables is beyond the
scope of this lesson, but here are the basics. I recommend that you review your DBMS
documentation for more information and specifics.

t52 LËss0N 17: Creating and Manipulating Tables

Basic Table Greation
To create a table using cREATE TABLE, you must specify the following information:

> The name of the new table specified after the keywords cREATE rABr,E.

> The name and definition of the table columns separated by commas.

Þ Some DBMSs require that you also specify the table location (as in which
specific database it is to be created).

The following SQL statement creates the products table used throughout this book:

lnput v
CREATE TABLE Producls
t

prod_id CHAR (10)
vend_id CHAR(10)
prod_name CHAR (254)

prod3rice DECIMAT, (8, 2)

prod_desc VARCHAR(1000)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL

Analysis v
As you can see in (he above statement, the table name is specified immediately
following the cReate raer,n keywords. The actual table definition (all the columns) is
enclosed within parentheses. The columns themselves are separated by commas. This
particular table is made up of five columns. Each column definition starts with the col-
urnn name (which must be unique within the table), followed by the column's datatype.
(Refer to Lesson 1, "Understanding SQL," for an explanation of datatypes. In addition,
Appendix C, "Using SQL Datatypes," lists commonly used datatypes and their compat-
ibility.) The entire statement is terminated with a semicolon after the closing parenthesis.

I mentioned earlier that cREATE rABLE syntax varies greatly from one DBMS to
another, and the simple script above demonstrates this. While the statement will work
as is on most DBMSs, for DB2 the rru¡,r, must be removed from the final column.
This is why I had to create a different SQL table creation script for each DBMS (as
explained in Appendix A).

TIP: Statement Formâtting
As you will recall, white space is ignored in SQL statements. Statements can
be typed on one long line or broken up over many lines. lt makes no difference
at all. This enables you to format your SQL as best suits you. The preceding
CREATE rABr,E statement is a good example of SQL statement formattingr the
code is specified over multiple lines, with the column definitions indented for
easier reading and editing. Formatting your SQL in this way is entirely optional
but highly recommended.

Creating Tables 153

TIP: Rêplac¡nÉ Existing Taþles
When you create a new tâble, the table name specified must not exist; otherwise,
,youfll generate an error. To prevent accidental overwritjng, SQL requires that you first
manually remove a table (see later sections for details) and then recreate it, rather
than just overwrit¡ng it.

Working w¡th Nur,L Values
Back in Lesson 4, "Filtering Data," you leamed that NULL values are no values or the
lack of a value. A column that allows rur,l values also allows rows to be inserted with
no value at all in that column. A column that does not allow rrulr, values does not
accept rows with no value; in other words, that column will always be required when
rows are inserted or updated.

Every table column is either a NULr, column or a Nor mur,r, column, and that state is
specified in the table definition at creation time. Take a look at the following example:

lnput V
CREATE TABLE OrdeTs
(

order_num INTEGER
order_date DATETIME
cust_id CHAR (l-0)

);

CREATE TABLE VendoTS
(

wend_id CI{AR (10)

vend_name CHAR(50)
vend_address CHAR(50)
vend_city CIIAR(50)
vend state CI{AR (5)
vend_zip CHÄR(1o)
vend country CI{AR(50)

);

NOT NULL,
NOT NUIJir,
NOT NUT,L,

Analysis v
This statement creates the orders table used throughout this book. orders contains
three columns: the order number, order date, and customer ID. All three columns
are required, and so each contains the keyword Nor NULL. This will prevent the
insertion of columns with no value. If someone tries to insert no value, an error will be
retumed, and the insertion will fail.

This next example creates a table with a mixture of NULL and Nor NULL columns:

lnput v

NOT NIJLT,,
NOT NTTL],,

1.54 l"Srfr.ìûfd rir.?: Creating and Manipulating Tables

Analysis v
This statement creates the vendors table used throughout this book. The vendor ID
and vendor name columns are both required and are, therefore, specified as Nor NUIJL

The five remaining columns all allow tuur,l values, and so mor ¡sur,r, is not specified.
ivur,l is the clefar¡lf setting, so if mot mr,r, is not specifiecl, mur,r, is assumecl.

CAUTION : Specifying rurr,
Most DBMSs treat the absence of Nor NULL to mean Nur,r,. However, not all
do. Some DBMSs require the keyword NULL and will generate an error if it is not
specified. Refer to your DBMS documentation for complete syntax informat¡on.

TIP: Pr¡mary Keys and Nur,L Values
Back in Lesson 1, you learned that primary keys are columns whose values
uniquely identify every row in a table. Only columns that do not allow r¡ur,r, val-
ues can be used in primary keys. Columns that allow no value at all cannot be
used as unique identifiers.

CAUii O ü : Understanding Nnr.L

Don't confuse rur,r, values with empty strings. A rqur,r, value is the lack of a
value; it is not an empty string. lf you were to specify ' ' (two single guotes
with nothing in between them), that would be allowed in a mor NUr.r, column. An
empty str¡ng is a valid value; it is not no value. l¡ur,r, values are specified with
the keyword NULL, not with an empty string.

Specifying Default Values
SQL enables you to specify default values to be used ifno value is specified when a
row is inserted. Default values are specified using the DEFAULT keyword in the column
definitions in the cnears rABLE statement.

Look at the following example:

lnput v
CREATE TABLE OTdeTTIems

order_num TNTEGER
order_ítem INTEGER
prod_id CHAR (L0)

quantity INTEGER
ítemSrice DECriviÀL i8 , 2 ;

uit, l

lloT
¡roT

i,ifi'J'

¡ilJt,L,
hTiIl.T.

i\i r ll, r, DEFAULT 1,

Updating Tables I rr

Analysis v
This statement creates the orderttems table that contains the individual items that
make up an order. (The order itself is stored in the orders table,) The quanriry
column contains the quantity for each item in an order. In this example, adding the
text DEFAUT,T 1 to the column description instructs the DBMS to use a quantity of r if
no quantity is specified.

Default values are often used to store values in date or time stamp columns. For
example, the system date can be used as a default date by specifying the function or
variable used to refer to the system date. For example, MySQL users may specify
DEFAULT cURRENT_ÐATe (), while Oracle users may specify ÐEFAULT sysoarg, and
SQL Server users may specify DEFAULT cErÐATE O . Unfortunately, the command
used to obtain the system date is different in just about every DBMS. Table 17.1
lists the syntax for some DBMSs. If yours is not listed here, consult your DBMS
documentation.

TABLE 17.1 Obtaining the System Date
DBMS Function/Variable

D82
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

CURRENT-DATE

CURRENT_DATEO or Novro
SYSÐATE

CURRENT_DATE

GETÐATE 0
date ('norr')

TIP: UsinE DErAur"r ln¡tead of ¡firr,L Values
Many database developers use DEFAUTJT values instead of NULL columns,
especially in columns that will be used in calculations or data groupings.

Updating Tables
To update table definitions, you use the ALIER IABLE statement. Although all DBMSs
support ALTER TABLE, what they allow you to alter varies dramatically from one to
another. Here are some points to consider when using ALTER TABLE:

> Ideally, tables should never be altered after they contain data. You should
spend sufficient time anticipating future needs during the table design
process so that extensive changes ar:e not required later on.

156 LESSON 17: Creating and Manipulating Tables

> All DBMSs allow you to add columns to existing tables, although some
restrict the datatypes that may be added (as well as NuLr, and DEFAüLI usage).

> Many DBMSs do not allow you to remove or change columns in a table.

Þ Most DBMSs allow you to rename columns.

> Many DBMSs restrict the kinds of changes you can make on columns that
are populated and enforce fewer restrictions on unpopulated columns.

As you can see, making changes to existing tables is neither simple nor consistent.
Be sure to refer to your own DBMS documentation to determine exactly what you
can alter,

To change a table using ALIER TABLE, you must specify the following information:

> The name of the table to be altered after the keywords ArrER TABLE.
(The table must exist; otherwise, an eÍor will be generated.)

> The list of changes to be made.

Because adding columns to an existing table is about tlte only operation supported by
all DBMSs, I'll use that for an example:

lnput v
ALTER TABLE Vendors
ADÐ vend3hone CHAR(20) ;

Analysis v
This statement adds a column named vend3hone to the vendors table. The datatype
must be specified.

Other er,run operations-for example, changing or dropping columns, or adding
constraints or keys-use a similar syntax.

Note that the following example will not work with all DBMSs:

lnput v
ALTER TABITE Vendors
DROP COLUMN vend__phone; '.)

Deleting Tables 157

Complex table structure changes usually require a manual move process involving
these steps:

L. Create a new table with the new column layout.

2. Use the ¡rsenr sELEcr statement (see Lesson 15, "Inserting Data," for
details of this statement) to copy the data from the old table to the new table.
Use conversion functions and calculated fields, if needed.

3. Verify that the new table contains the desired data.

4. Rename the old table (or delete it, if you are really brave).

5. Rename the new table with the name previously used by the old table.

6. Re-create any triggers, stored procedures, indexes, and foreign keys as

needed.

,CAUTIO-N:: UsèAr,TER':raar.r Garefully 'ì''ir I "ì ;

User Ar,rnR' Terir,p With extreme caution, and be sureyou have'a complete'set
of backups (both schema and data),before proceeding, Database table changes
cannot be undone, and if you add columns you don't need, you might not be
able to remove them. Similarly, if you drop a column that you do need, you might
lose all the data in that column.

Deleting Tab'¡es
Deleting tables (actually removing the entire table, not just the contents) is very
easy-arguably too easy. Tables are deleted using the DRop IABLE statement:

lnput v

l; ,:NOTE: er.ren reBr.s and SQtlte

t

L

DROP TABLE Custcopy;

158 LËSstN å?: Creating and Manipulating Tables

Analysis v
This statement deletes the custcopy table. (You created that one in Lesson 15.) There
is no confirmation, nor is there an undo. Executing the statement will permanently
remove the table.

Renaming Tables
Table renaming is supported differently by each DBMS. There is no hard-and-fast
standard for this operation. DB2, MariaDB, MySQL, Oracle, and PostgreSQl users
can use the RsNAMe statement. SQL Server users can use the supplied sp_renane
stored procedure. SQLite supports the renaming of tables via the er,reR resl,s
statement.

The basic syntax for all rename operations requires that you specify the old name and
a new name; however, there are DBMS implementation differences. Refer to your
own DBMS documentation for details on supported syntax.

Summary
In this lesson, you learned several new SQL statements. cREATE reer,s is used to
create new tables, ar,rrR raer,e is used to change table columns (or other objects like
constraints or indexes), and oeop tesT,n is usetl to completely delete a table. These
statements should be used with extreme caution and only after backups have been
made. Because the exact syntax of each of these statements varies from one DBMS to
another, you should consult your own DBMS documentation for more information.

('
Challenges

Ghallengies
1. Add a website column (vend_web) to the vendors table. You need a text

field big enough to accommodate a URL.

2. Uæ UpDarE statements to update vendor records to include a website
(you can make up any address).

159

(-

{

(

I

I

I

ú,

Usñng Views

In thís lesson, you'll learn exactly what views are, how they work, and when they
should be used. You'll also see how views can be used to simplifi some of the SQL
operations performed in earlier lessons.

Understanding Views
Views are virtual tables. Unlike tables that contain data, views simply contain queries
that dynamically retrieve data when used.

i'ìi)l lì Views in SQLite
SQLite supports only read-only views, so views may be created and read, but
their contents cannot be updated.

The best way to understand views is to look at an example. Back in Lesson 12,
"Joining Tables," you used the following sELEcr statement to retrieve data from three
tables:

Input ø
SELECT cust_name, cust contact
FROM Customers, Orders., Orderltems
WHERE Customers. cust_id = Orders. cust_id

AND Orderltems,order num = Orders.order num
AND prod_id = 'RGANOI';

That query was used to retrieve the customers who had ordered a specific product.
Anyone needing this data would have to understand the table structure, as well as how
to create the query andjoin the tables. To retrieve the same data for another product
(or for multiple products), you would have to modify the last v'¡HnRp clause.

t62 LESSSS{ ã"Si Using Views

Now imagine that you could wrap that entire query in a virtual table called
Productcustomers. You could then simply do the following to retrieve the
same data:

Ëeapuaå ",r

SELECT cust_name, cust_conÈact
FROM Productcustomers
WHERE prod id = 'RGANOI|,'

This is where views come into play. Productcustomers is a view, and as a view, it
does not contain any columns or data. Instead, it contains a query-the same query
used above tojoin the tables properly.

Why Use Views
You've already seen one use for views. Here are some other common uses:

) To reuse SQL statements.

> To simplify complex SQL operations. After the query is written, it can be
reused easily, without having to know the details of the underlying query
itself.

) To expose parts of a table instead of complete tables.

Þ To secure data. Users can be given access to specific subsets oftables
instead of to entire tables.

> To change data formatting and representation. Views can retnrn data
formatted and presented differently from their underlying tables.

For the most part, after views are created, they can be used in the same way as tables.
You can perform sErJEcr operations, filter and sort data, join views to other views or
tables, and possibly even add and update data. (There are some restrictions on this last
item. More on that in a moment.)

The imporlant thing to remember is views are just that*views into data stored
elsewhere. Views contain no data themselves, so the data they return is retrieved from
other tables. When data is added or changed in those tables, the views will refum that
changed data.

You'll be relieved to know that view creat¡on syntax is supported pretty
ìi! DBMS Gonsistency

tently by all the major DBMSs

Understanding V¡ews

| :;r:1iIri ìl.l Performance lssues
Because views conta¡n no data, any retrieval needed to execute a query must
be processed every time the view is used. lf you create complex views with
multiple joins and filters, or if you nest views, you may find that performance is
dramatically degraded. Be sure you test execut¡on before deploying applications
that use views extensively.

View Rules and Restrictions
Before you create views yourself, you should be aware of some restrictions.
Unfortunately, the restrictions tend to be very DBMS specific, so check your own
DBMS documentation before proceeding.

Here are some of the most common rules and restrictions goveming view creation and
usage:

> Like tables, views must be uniquely named. (They cannot be named with the
name of any other fable or view.)

> There is no limit to the number of views that can be created.

> To create views, you must have security access. This level of access is
usually granted by the database administrator.

Þ Views can be nesfed; that is, a view may be built using a query that
retrieves data from another view. The exact number of nested levels allowed
varies from DBMS to DBMS. (Nesting views may seriously degrade
query performance, so test this thoroughly before using it in production
environments.)

> Many DBMSs prohibit the use of the oRpeR ey clause in view queries.

) Some DBMSs require that every column returned be named; this will require
the use of aliases if columns are calculated fields. (See Lesson T, "Creaiing
Calculated Fields," for more information on column aliases.)

Þ Views cannot be indexed, nor can they have triggers or default values
assoçiated with them.

Þ Some DBMSs, like SQLite, treat views as read-only queries, meaning you
can retrieve data from views but not write data back to the undedying tables.
Refer to your DBMS documentation for details.

Þ Some DBMSs allow you to create views that do not allow rows to be
inserted or updated if that insertion or update will cause that row to no lon-
ger be part of the view. For example, if you have a view that retrieves only

163

t64 tuËSS(}rS lE: Us¡ng V¡ews

customers with email addresses, updating a customer to remove his email
address would make that customer fall out of the view. This is the default
behavior and is allowed, but depending on your DBMS, you might be able to
prevent this from occurring.

:,¡: Rofêl to Your DBMS Documentation
Thats a long list of rules, and your own DBMS documentation will likely contain
additional rules too. lt is worth taking the time to understand what restrictions
you must adhere to before creating views.

Greating Views
So now that you know what views are (and the rules and restrictions that govem
them), let's look at view creation.

Views are created using the cREATE vrEW statement. Like cREATE TABI.E, cREATE

vruw can only be used to create a view that does not exist.

i:r1.r.; :' ¡ana-in$ VieWS
To remove a vie4 you use the ÐRop statement. The syntax is simply ÐRop vrew
viewname; ,

To overwr¡te (or update) a view, you must first DRop it and then re-create it;

Using Views to Simplify Gomplex Joins
One of the most common uses of views is to hide complex SQL, and this often
involves joins. Look at the following statement:

frrupmt ',t'

CREATE VIEW Productcustomers AS
SELECT cust_name, cusL_contact, prod_id
FROM Cust.omers, Orders, Orderltems
WHERE Customers. cust_id = Orders. cust_id

AND Orderltems.order num = Orders.order num;

AatmË3rsüw ::"

This statement creates a view named productcustomers, which joins three tables
to retum a list of all customers who have ordered any product. If you were to
use SELECT * FROM Productcustomers, you'd list every customer who ordered
anything.

Creating Views 165

To retrieve a list of customers who ordered product RcÄN01, you can do the following

lnput e"

SELECT cust_name, cust_contact.
FROM Productcustomers
WHERE prod id = 'RG.ANO1';

Output v
cust name cust contact

¡.'un4A1l Denise 1,. Stephens
Kim Hov/ardThe Toy St,ore

Analysis v
This statement retrieves specific data from the view by issuing a wHERE clause. When
the DBMS processes the request, it adds the specified mreRs clause to any existing
wusRp clauses in the view query so that the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements. Using
views, you can write the underlying SQL once and then reuse it as needed.

ì':t- Great¡n!¡ Reusable Vlewe
It is a good idea to create views that are not tied to specific data. For example,
the view created above returns customers for all products, notjust product
RcANoi. (for which the view was first created). Expanding the scope of the view
enables it to be reused, making it even more useful. lt also eliminates the need
for you to create and maintain multiple similar views.

Using Views to Reformat Retrieved Data
As mentioned above, another common use of views is for reformatting retrieved data.
The following SQL Server snr,Ecr statement (from Lesson 7) returns vendor name
and location in a single combined calculated column:

lnput'v*
SELECT RTRÏM(vend_name,) + ' (' + RTRÏM(vend_counÈry) +. ')'

AS vend_títle
FROM Vendors
ORDER BY vend name;

166 LESSON 18: Using Views

v
vend title

Bear Emporium (UsA)
Bears R Us (USA)
Ðo11 House I¡c. (USA)
Fun and cames (England)
Furball Inc. (USA)
ifouets et ours (France)

The following is the same statement" but using the | | syntax (as explained back in
Lesson 7):

lnput v
(t ll ereru(vend_country) ll ')SELECT RTRIM(vend_name) I I

AS vend_Èítle
FROM Vendors
ORÐER BY vend name,'

Output v
vênd títle

Bear Emporíum (USA)
Bears R Us (UsA)
Doll HouÉe Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)

,**-"*,**.'.....'-.'..-.t.,'.,*

Now suppose that you regularly needed results in this format. Rather than perform the
concatenation each time it was needed, you could create a view and use that instead.
To turn this statement into a view, you can do the following:

lnput v
CREATE VIElil Vendorlocali.ons AS
SEIJECT RTRIM(vend_name) +' (' + RTRÏM(vend_country) +')'

Ag vend_title
FROM Vendors;

Here's the same statement using | | syntax:

lnput w

CREATE VIEW Vendorlocations AS
SELECT RTRIM(vend_nâme) Il ' (

AS vend_títle
FROM Vendors t

Creating Views

ll RrRrM(vend_country) ll ')'

1.67

ÂnalYsts orr

This statement creates a view using the exact same query as the previous sEr,Ecr
statement. To retrieve the data to create all mailing labels, simply do the following:

lnrput x'
SELECT * FROM Vendorlocations t

Sutpu* w
vend titl.e

Bear Emporium (USA)
Bears R Us (USA)
Do1l. House Inc. luSa)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

Usingl Yiews to Filter Unwanted Data
Views æe also useful for applying common wuens clauses. For example, you might
want to define a customerEMailr,íst view so that it filters out customers without
email addresses. To do this, you can use the following statement:

Émpruf w
CREATE VTEW CusIomerEMailT,igL AS
SELECT cust_id, cust_name, cusu_email
FROM Cust.omers
WHERE cugt emai]. TS NOT NUL],'

i\ii)'i i:: sEI,Ecr Restricllone All Apply
Earlier in this lesson I stated that the syntax used to create views is rather
consistent between DBMSs. So why mult¡pl" versions of statements? A view
simply wraps a sELEcr statement, and the syntax of that sELEcr must adhere
to all the rules and restrictions of the DBMS being used.

LESSON 18: Using Víews

Analysis w
Obviously, when sending email to a mailing list, you'd want to ignore users who have
no email address. The wr¡rRs clause here filters out those rows that have rur,r, values
in the cust_email columns so that they'll not be retrieved.

View customerEMailr,ist can now be used like any table:

lnput w
SELECT *
FROM CustomerEMailT,ist ;

Output w
cust_id cust_name cust_email

1000000001
1-000000003
1000000004

village Toys
Fun4AI1
Fun4All

sales@villagetoys . com
jjones@fun4al1.com
dstephens@f un4a1 1 . com

4.9900
L1.9900

Using Views w¡th Galculated_F_ieldf
,..

Views are exceptionally useful for simplifying the use of calculated fields. The
following sELEcr statement was introduced in Lesson 7. It retrieves the order items
for a specific order, calculating the expanded price for each item:

lnput w
SELECT pro¡l íd,

quantity,
itemjrice,
quantity*item_price AS expandedjrice

FROM Orderltems
WHERE order num = 20008;

Output v"
prorl id quantity itemjrice expanded3rice

RGANOl
BRO3

5 24.9500
s9.9s00

iríjlr::lvEERE Glauses antd w¡rrns Glauseg
If a wnnne clause is used when retrieving data from the view, tfre two s*s
of clauses (the one in the view and the one passed to it) will be combined
automatically.

5

Summary 169

BNBGO]-
BNBGO2
BNBGO3

20008
20008
20008
20008
20008

10
L0
l_0

RGÄNo1.
BRO3
BNBGOl
BNBGO2
BNBGO3

3.4900
3.4900
3.4900

34 . 9000
34.9000
34 .9000

To tum this into a view, do the following:

lnput w
CREATE VIEW OrderltemsExpanded AS
SELECT order_num,

prod id,
guanÈity,
j.tenr3rice,
quantity*item3ríce AS expanded3rice

FROM Orderltems

To retrieve the details for order 2000s (the output above), do the following:

lnput w
SEI,ECT *
FROM OrderltemsExpanded
b¡HERE order num = 20008;

Output w
order_num prod_id quant.íty ít.emjrice expandedSríce

5
5
1".0

l-0
t-0

4.99
r-1,99
3 .49
3.49
3 .49

24.95
59.95
34 .9A
34.90
34.90

As you can see, views are easy to create and even easier to use. Used correctly, views
can greatly simplify complex data manipulation.

Ssmmaty
Views are virtual tables. They do not contain data, but instead, they contain queries
that retrieve data as needed. Views provide a level of encapsulation around SQL
sELEcr statements and can be used to simplify data manipulation, as well as to
refomat or secure underþing data.

t

I

1

t.

t70 LESSON 18: Using Views

Gha]len$es
1. Create a view called customerswithorders that contains all ofthe columns

in cusromers but includes only those who have placed orders. Hint you can
use irorN on the orders table to filter just the customers you want. Then use
a sELEcr to make snre you have the right data.

2, What is wrong with the following SQL statement? (Iry to figure it out
without running it.)

CREATE VIEW OrderltemsExpanded AS
SEIJECT order_num,

prod_id,
guantity,
j.temjrice,
quanticy*item_¡>rice AS expanded3rice

FROM OrderltemÊ
ORDER BY order num;

Working rnrlth Stored
Procedures

In this lesson, you'll learn what stored procedures are, why they are used, and how
You'll also look at the basic syntaxfor creatíng and using them.

Understanding Stored Procedures
Most of the SQL statements that we've used thus far are simple in that they use a
single statement against one or more tables. Not all operations are that simple. Often,
multiple statements will be needed to perform a complete operation. For example,
consider the following sçenario:

) To process an order, checks must be made to ensure that items are in stock.

> Ifitems are in stock, they need to be reserved so that they are not sold to
anyone else, and the available quantity must be reduced to reflect the correct
amounf in stock.

> Any items not in stock need to be ordered; this requires some interaction
with the vendor.

> The customer needs to be notified as to which items are in stock (and can be
shipped immediately) and which are backordered.

This is obviously not a complete example, and it is even beyond the scope of the
example tables that we have been using in this book, but it will suffice to help make a
point. Performing this process requires many SQL statements against many tables. In
addition, the exact SQL statements that need to be performed and their order are not
fixed; they can (and will) vary according to which items are in stock and which are nol

How would you write this code? You could write each of the SQL statements individ-
ually and execute other statements conditionally based on the result. You'd have to do
this every time this processing was needed (and in every application that needed it).

You could cÍeate a stored procedure. Stored procedures are simply collections of one
or more SQL statements saved for future use. You can think of them as batch files,
although in truth they are more than that.

t72 LESSÕ$å 3.9: Work¡ng w¡th Stored Procedures

, rrr.,r Not in SQLite
SQLite does not support stored procedures

r'rr r;:- Thêre's a lot More to lt
Stored procedures are complex, and full coverage of the subject requires
more space than can be allocated here. ïruthfully, there are entire books on
the subject. This lesson will not teach you all you need to know about stored
procedures. Rather, it is intended simply to introduce the subject so that you
are familiar with what they are and what they can do. As such, the examples
presented here provide syntax for Oracle and SQL Server only.

UnderstandinÉ Why to Use Stored
Procedures
Now that you know what stored procedures are, why use them? There are lots of
reasons, but here are the primary ones:

> To simplify complex operations (as seen in the previous example) by
encapsulating processes into a single easy-to-use unit.

Þ To ensure data consistency by not requiring that a series of steps be created
over and over. If all developers and applications use the same stored
procedure, then the same code will be used by all.

Þ To prevent errors; this is an extension of the preceding reason. The more
steps that need to be performed, the more likely it is that errors will be
introduced. Preventing errors ensures data consistency.

> To simplify change management. If tables, column names, or business logic
(orjust about anything) changcs, thcn only the storcd proccdurc codc nccds
to be updated, and no one else will even need to be aware that changes
were made.

Þ To ensure security; this is an extension ofthe preceding reason. Restricting
access to underlying data via stored procedures reduces the chance of data
comrption (unintentional or otherwise).

> To do less work to process the command. Because stored procedures are
usually stored in a compiled form, the DBMS has to do less work. This
results in improved performance.

Executing Stored Procedures 47Ò

Þ To write code that is more powerful and flexible. There are SQL language
elements and features fhat are available only within single requests. Stored
procedures can use them for this reason.

In other words, there are three primary benefits: simplicity, security, and performance.
Obviously, all are extremely important. Before you run off to turn all your SQL code
into stored procedures, here's the downside:

> Stored procedure syntax varies dramatically from one DBMS to the next. In
fact, it is close to impossible to write truly portable stored procedures. Having
said that, the stored procedure calls themselves (their names and how data is
passed to them) can be kept relatively portable so that if you need to change to
another DBMS, at least your client application code may not need changing.

> Stored procedures tend to be more complex to write than basic SQL
statements, and writing them requires a greater degree of skill and experience.
As a result, many database administrators restrict stored procedure creation
rights as a security measure (primarily due to the previous bullet iúem).

Nonetheless, stored procedures are very useful and should be used. In fact, most
DBMSs come with all sorts of stored procedures that are used for database and table
management. Refer fo your DBMS documentation for more information on these.

i'li,rl-il, Gan't Write Them? You Gan Still Use Them
Most DBMSs dist¡nguish the security and access needed to write stored
procedures from the sectiJrity and access needed to execute them. This is a
good thing; even if you can't (or don't want to) write your own stored procedures,
you can still execute them when appropriate.

Exeeuting Stored Procedures
Stored procedures are executed far more often than they are written, so we'll start
there. The SQL statement to execute a stored procedure is simply ExECUTE. EXECUTE

takes the name of the stored procedure and any parameters that need to be passed to it.
Take a look at this example (you cannot actually run it because the stored procedure
AddNevrProduct does not exist):

lnput "1.

EXECUTE AddNevrProduct (' JTSOI- r,
tStuf fed Eif fel Tor,rer' ,

6.49,
rPLush stuffed toy s/ith

Þthe text La Tour Eiffel 1n red whit.e and blue');

t74 L€s$6rq gs: Work¡ng with Stored Procedures

AmalysEs'e;'

Here a stored procedure named AddNevr'product is executed; it adds a new product
to the producrs table. AddNewproduct takes four parameters: the vendor ID (the
primary key from the vendors table), producl name, price, and description. These four
parameters match four expected variables within the stored procedure (defined as part
ofthe stored procedure itselÐ. The stored procedure adds a new row to fhe products
table and assigns these passed attributes to the appropriate columns.

In the products table, you'll notice that another column needs a value-the prorq_id
column, which is the table's primary key. V/hy was this value not passed as an

attribute to the stored procedure? To ensure that IDs are generated properly, it is
safer to have that process automated (and not rely on end users). That is why a stored
procedure is used in this example. This is what this stored procedure does:

> It validates the passed data, ensuring that all four parameters have values.

> It generates a unique ID to be used as the primary key.

Þ It inserts the new product into the products table, storing the generated
primary key and passed data in the appropriate columns.

This is the basic form of stored procedure execution. Depending on the DBMS used,
other execution options include the following:

> Optional parameters, with default values assumed if a parameter is not
provided

> Out-of-order parameters, specified in parameter=value pairs

> Output parameters, allowing the stored procedure to update a parameter for
use in the executing application

Þ Data retrieved by a sri,rcr statement

Þ Retum codes, enabling the stored procedure to retum a value to the execut-
ing application

Greating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you a taste for
what is involved, let's look at a simple example-a stored procedure that counts the
number of customers in a mailing list who have email addresses.

Creat¡ng Stored Procedures

Here is the Oracle version:

lnput s.

CREATE PROCEDURE MailínglistcounÈ
Listcount OUT INTEGER

)

1S
v_TOv,S ÏNTEGER¡
BEGIN

SELECT COUNT(*) INTO v rows
FROM customers
¡IHERE NOT cust_email IS NULL;
LísLCuurrL := v_!(Jwsi

END;

Analysis w
This stored procedure takes a single parameter named Listcount. Instead ofpassing a
value to the stored procedure, this parameter passes a value back from it. The keyword
out is used to specify this behavior. Oracle supports parameters oftypes ru (those
passed to stored procedures), out (those passed from stored procedures, as we've used
here), and rwout (those used to pass parameters to and from stored procedures). The
stored procedure code itself is enclosed within escrx and prup statements, and here
a simple snr,Ecr is performed to retrieve the customers with email addresses. Then
r,istcount (the output parameter passed) is set with the number of rows that were
retrieved.

To invoke the Oracle example, you could do the following:

lnput w
var Returnvalue NUMBER
EXEC Mailingl,istCount (:Returnvalue),
SELECT Ret.urnvalue i

Analysis w'

This code declares a variable to hold whatever fhe stored procedure returns, executes
the stored procedure, and then uses a sEr,Ecr to display the retumed value.

l/b LESSoN ,.9: Working with Stored Procedures

Here's the Microsoft SQL Server version:

lnput w
CREATE PROCEÐURE Mailinglistcount
AS
DECLARE @cnt INTEGER
SET,ECT @CNT = COUNT(*)
FROM Customers
WHERE NOT cust_email IS NULL;
RETURN @cntt

Analysis re"

This stored procedure takes no parameters at all. The calling application retrieves the
value by using SQL Server's retum code support. Here a local variable named ocnr
is declared using the ÐEcLARE statement (all local variables in SQL Server are named
starting with a o). This variable is then used in the sELEcr statement so that it contains
the value returned by the couttt () function. Finally, the Rntunx statement is used to
return the count to the calling application as RETURN @cnr.

To invoke the SQL Server example, you could do the following:

lnput v
DECLARE @ReTurnvalue INT
EXECUTE @Returnvalue=Mai I ingI,i stCount
SELECT @Returnvalue;

Analysis s
This code declares a variable to hold whatever the stored procedure returns, executes
the stored procedure, and then uses a sELEcr to display the returned value.

Here's another example, this time to insert a new order in the orders table. This is a
SQL Server--only example, but it demonstrates some useful stored procedure uses and
techniques:

lnput v
CREATE PROCEDURE Ner^rorder @cust id CHAR(10)
AS
-- Declare variable for order number
DECLARE @order_num INTEGER
-- GeL current highest order number
SELECT @order_num=MÄX (order_num)

FROM Orders
-- Determine next order number

Creating Stored Procedures t77

SELECT @order_num=@order_num4. L
-- Insert new order
INSERT INTO Orders (ordêr_num, order_date,
VALUES (@order_num, GETDATE O , @cust_id)
-- Return order number
RETURN @order num;

cust_id)

Analysis w

This stored proÇedure creates a new order in the orders table. It takes a single
parameter-the ID of the customer placing the order. The other two table columns,
the order number and order date, are generated automatically within the stored
procedure itself. The code first declares a local variable to store the order number.
Next, the current highest order number is retrieved (using a uax 1 ¡ function) and
incremented (using a sELEcr statement). Then the order is inserted with an TNsERT

statement using the newly generated order number, the current system date (retrieved
using the GETDATE O function), and the passed customer ID. Finally, the order
number (which is needed to process order items) is retumed as RETURN @ord.er_num.
Notice that the code is commented; this should always be done when writing stored
procedures.

hiO'it: Gomment Your Gode
All code should be commented, and stored procedures are no different. Adding
comments will not affect performance at all, so there is no downside here (other
than the time it takes to write them). The benefits are numerous and include
mak¡ng it easier for others (and yourself) to understand the code and safer to
make changes at a later date.
As noted in Lesson 2, "Retrieving Data," a common way to comment code is
to precede it with -- (two hyphens). Some DBMSs support alternate comment
syntax, but all support -- and so you are best off usingthat.

Here's a quite different version of the same SQL Server code:

lnput 'e

CREATE PROCEDURE Neworder @cust id CHAR(l-0)
AS
- - Insert new order
INSERT INTO Orders (cust íd)
VALUES (@cust_id)
-- Return order number
SELECT order num = @@IDENTITYi

178 LE$SûN [9: Working w¡th Stored Procedures

Amalysts +

This stored procedure also creates a new order in the orders table. This time the
DBMS itself generates the order number. Most DBMSs support this type of function-
ality; SQL Server refers to these auto-incrementing columns as Identity fields (other
DBMSs use names such as Auto Number or Sequences). Again, a single parameter
is passed-the customer ID of the customer placing the order. The order number and
order date are not specified at all; the DBMS uses a default value for the date (the
cErDArE O function), and the order number is generated automatically. How can
you find out what the generated ID is? SQL Server makes that available in the global
variable @@rDuNrrry, which is returned to the calling application (this time using a
sErEcr statement).

As you can see, with stored procedures there are often many different ways to accom-
plish the same task. The method you choose will often be dictated by the features of
the DBMS you are using.

Summary
In this lesson, you leamed what stored procedures are and why they are used. You
also learned the basics of stored procedure execution and creation syntax, and you
saw some of the ways these can be used. Using stored procedures is a really important
topic, and oûe that is far beyond the scope of one lesson. As you have seen here,
stored procedures are implemented differently in each DBMS. In addition, your own
DBMS probably offers some form of these functions, as well as others not mentioned
here. Refer to your DBMS documentation for more details.

tuffiffiffiffiru ffiffi

Managing Transaction
Processing

i

In this lesson, you'll learn what transactions are ønd how to use co¡twtt and
RoT,LBACK Statements to ,nanãge transøction processing.

Understanding Transaction Processing
Transaction processing is used to maintain database integrity by ensuring that batches
of SQL operations execute completely or not at all.

As explained back in Le$son 12, 'Toining Tables," relational databases are designed
so that data is stored in multiple tables to facilitate easier data manipulation,
management, and reuse. Without going in to the hows and whys of relafional database
design, takç it as a given that well-designed database schemas are relational to some
degree.

The ordere tables that you've been using in the past 19 lessons are a good example
ofthis. Orders are stored in two tables: orders stores actual orders, and orderrrems
stores the individual items ordered. These two tables are related to each other using
unique IDs called primary keys (as discussed in Lesson l, "Understanding SQL").
These tables, in furn, are related to other tables containing customer and product
information.

The process ofadding an order to the system is as follows:

1. Check if the customer is already in the database. If not, add him or her.

2, Retrieve tlte customer's ID.

3. Add a row to the orders table associating it with the customer ID.

4. Retrieve the new order ID assigned in the orders table.

5. Add one row to the orderrrems table for each item ordered, associating it
with the orders table by the retrieved ID (and with the products table by
product ID).

180 C"ËSStru ã&: Managing Transaction Processing

Now imagine that some database failure (for example, out of disk space, security
restrictions, table locks) prevents this entire sequence from completing. V/hat would
happen to your data?
'Well, if the failure occurred after the customer was added and before the orders
table was added, there is no real problem. It is perfectly valid to have customers
without orders. When you run the sequence again, the inserted customer record will be
retrieved and used. You can effectively pick up where you left off.

But what if the failure occurred after the orders row was added but before the
orderrtems rows were added? Now you'd have an empty order sitfing in your
database.

'W'orse, what if the system failed during adding the orderrtems rows? Now you'd end
up with a partial order in your database, but you wouldn't know it.

How do you solve this problem? That's where transaction processing comes in.
Transaction processing is a mechanism used to manage sets of SQL operations that
must be executed in batches so as to ensure that databases never contain the results
of patial operations. With transaction processing, you can ensure that sets of opera-
tions are not aborted mid-processing-they either execute in their entirety or not at all
(unless explicitly instructed otherwise). If no error occurs, the entire set of statements
is committed (written) to the database tables. If an error does occur, then a rollback
(undo) can occur to restore the database to a known and safe state.

So, if we look at the same example, this is how the process would work:

1. Check if the customer is already in the database; if not, add him or her.

2, Commit tlle customer information.

3. Retrieve the customer's ID.

4. Add a row to the orders table.

5. If a failure occurs while adding the row to orders, roll back.

6. Retrieve the new order ID assigned in the oraers table.

7. Add one row to the orderrtems table for each item ordered.

8. If a failure occurs while adding rows to orderrtems, roll back all the
orderrtems rows added and the orders row.

'When you're working with transactions and transaction processing, a few keywords
will keep reappearing. Here are the terms you need to know:

> Transaction-A block of SQL statements

> Rollback-The process of undoing specified SQL statements

Controlling Transactions 181

> Commit-V/riting unsaved SQL statements to the database tables

> Savepoint-A temporary placeholder in a transaction set to which you can
issue a rollback (as opposed to rolling back an entire transaction)

TIP: Which Statemsnts Gan You Roll Back?
Transaction processing irs used to manage rNsERT, upDATE, and DELETE
statements. You cannot roll back sELEcr statements. (There would not be much
point in doing so anyway.) You cannot roll þack cREATE or ÐRop operations.
These statements may be used in a transaction block, but if you perform a
rollback, they will not be undone.

Gontrol I ing Transactions
Now that you know what transaction processing is, let's look at what is involved in
managing transactions.

CAUï|ON : lmplementation Dlfferences
The exact syntax used to, ¡mplement transaction processing differs from one
DBMS to another. Refer to your DBMS documentation before proceeding.

The key to managing transactions involves breaking your SQL statements into logical
chunks and explicitly stating when data should be rolled back and when it should not.

Some DBMSs require that you explicitly mark the start and end of transaction
blocks. In SQL Server, for example, you can do the following (replacing . . . with
the actual code):

lnput v
BEGÏN TRÄNSACTION

COMMIT TRÃNSACTION

Analysis v
In this example, any SQL between the eecrx rRÄNsAcrroN and coMr"rrt
rRÃNsAcTroN statements must be executed entirely or not at all.

The equivalent code in MariaDB and MySQL is

lnput V
START TRANSACTTON

LESSOS{ 20: Managing Transaction Processing

Oracle uses this syntax:

lnput v
SET TR.ANSACTION

PostgreSQl uses the ANSI SQL syntax;

lnput v
BEGIN

Other DBMSs use variations of the above. You'll notice that most implementations
don't have an explicit end of transaction. Rather, the transaction exists until something
terminates it, usually a coMMrr to save changes or a Ror,LBAcK to undo them, as will
be explained next.

Using Ror,r,BAcK
The SQL RoLLBAcK command is used to roll back (undo) SQL statements, as seen in
this next statement:

lnput v
DELETE FROM Orders;
RO],I,BACK;

Analysie v
In this example, a ÐELETE operation is performed and then undone using a RoTTLBACK

statement. Although not the most usefrrl example, it does demonsüate that, within a üans-
action block, DET.ETE operations (like rxsrnt ancl upnetr operations) are never final.

Using couurr
Usually, SQL statements are executed and written directly to the database tables.
This is known as an implicit commit-fhe commit (write or save) operation happens
automatically.

Controlling Transactions

Within a transaction block, however, commits might not occur implicitly. This, too,
is DBMS specific. Some DBMSs treat a transaction end as an implicit commit; others
do not.

To force an explicit commit, you use the coMurr statement. The following is a SQL
Server example:

lnput w
BEGTN TRANSACTION
DEI,ETE Orderltems WHERE order_num = 1"2345
DELETE Orders WHERE order num = 12345
COMMIT TRANSACTTON

Analysis w
In this SQL Server example, order number rz¡¿s is deleted entirely from the system.
Because this involves updating two database tables, orders and orderrtems, a
transaction block is used to ensure that the order is not partially deleted. The final
coMMrT statement writes the change only ifno error occurred. Ifthe first ÐELETE

worked, but the second failed, the DELETE would not be committed.

To accomplish the same thing in Oracle, you can do the following:

lnput w
SET TRANSACTION
DELETE Orderltems WHERE order_num = 12345;
DELETE Orders WHERE order num - 12345;
COMMIT;

Using Savepoints
Simple RoLLBAcK and cotr,r¡rrr statements enable you to write or undo an entire
transaction. Although this approach works for simple transactionso more complex
transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a single
transaction. If an error occurs, you only want to roll back to the point before the
orders row was added. You do ûot want to roll back the addition to the Cusromers
table (if there was one).

To support the rollback of partial transactions, you must be able to put placeholders at
strategic locations in the transaction block. Then, if a rollback is required, you can roll
back to one of the placeholders.

183

LESSON 20: Managing Transaction Processing

In SQL, these placeholders are called savepoínts.To create one in MariaDB, MySQL,
and Oracle, you use the sevspotlrr statement, as follows:

lnput v
SAVEPOINT deletel;

In SQL Server, you do the following:

lnput v
SAVE TRANSACTION deleteL ;

Each savepoint takes a unique name that identifies it so that, when you roll back, the
DBMS knows where you are rolling back to. To roll back to this savepoint, do the
following in SQL Server:

lnput v
ROT,LBACK TRANSACTION deleIel. ;

In MariaDB, MySQL, and Oracle, you can do the following:

lnput v
ROLLBACK TO deleÈel;

The following is a complete SQL Server example:

lnput v
BEGÏN TRÀNSACTTON
INSERT INTO Customers (cust_id, cust_name)
VALUES (10000000L0, 'Toys Emporium') ;
SAVE TRÄNSACTION Startorder;
INSERT INTo Orders (order_num, order_date, cusÈ_id)
VALUES (20100 , '2020/1,2/t ',1000000010) ;
IF @@ERROR <> O ROLLBACK TRANSACTION Startorder;
INSERT INTO Orderltems (order_num, order_item,
+prod_id, quantity, item3rice)
VALUES (20].00, 7, '8R01" r.00, 5.49) ;
IF @@ERROR <> 0 ROLLBACK TR.ANSACTION Startorder;
INSERT INTO Orderltems (order_num, order_item,
*prod_id, quantity, item3rice)
vAr,uES(20100, 2,'8R03" L00, 10.99) ;
IF @@ERROR <> 0 ROLLBACK TRANSACTION Startorder;
COMMIT TRÃNSACTION

Summary

Analysis v
Here four TNsERT statements are enclosed within a transaction block. A savepoint is
defined after the first rl¡s¡Rt so that, if any of the subsequent rNsERr operations fail,
the transaction is only rolled back that far. In SQL Server, a variable named @@ERRoR

can be inspected to see if an operation succeeded. (Other DBMSs use different func-
tions or variables to retum this information.) If øoennoR retums a value other than o,

an error occurred, and the transaction will roll back to the savepoint. Ifthe entire
transaction is processed, a coMMrr will be issued to save the data.

TIP: The tlore Savepoints the Better
You can have as many savepoints as you d like within your SQL code, and
the more the better. Why? Because the more savepoints you have, the more
flexibility you have in managing rollbacks exactly as you need them.

Summary
In this lesson, you leamed tlrat transactions are blocks of SQL statements that must
be executed as a batch. You learned that coMMrr and no¡,r,eecrc statements are used
to explicitly manage when data is written and when it is undone. You also learned
that savepoints provide a gteater level of control over rollback operations. Transaction
processing is a really important topic, and one that is far beyond the scope ofone
lesson. In addition, as you saw here, transaction processing is implemented differently
in each DBMS. As such, you should refer to your DBMS documentation for further
details.

185

rKssoN 2!,

Using Gursors

In this lesson, you'll be introd.uced to cursors and haw (and why) to use them.

Understandinff Gursors
SQL retrieval operations work with sets of rows known as result s¿ls. The rows
returned are all the rows that match a SQL statement-zero or more of them. When
you use simple sur,ecr statements, there is no way to get the first row, the next row,
or the previous 10 rows. This is an integral part of how a relational DBMS works.

NEW TERM: Result Set
The results retrieved'by a SQL query.'

Sometimes you need to step through rows forward or backward and one or more at
a time. This is what cursors are used for. A cursor is a database query stored on the
DBMS server-not a sEIrEcr statement, but the result set retrieved by that statement.
Once the cursor is stored, applications can scroll or browse up and down through the
data as needed.

Different ÞBMSs support different cursor options and features. Some of the more
common ones are

> The capability to flag a cursor as read-only so that data can be read but not
updated or deleted

> The capability to control the directional operations that can be performed
(forward, backward, first, last, absolute position, relative position, and so on)

> The capability to flag some columns as editable and others as not editable
I

steps,
cursors steps.

NOTE:

SQLite

3Qtite
supports

apply

Support

but
called

the syntax
The

can

ffiffiï,hffit;W
188 LESSOn¡ 21: Using Cursors

> Scope specification so as to be able to make the cursor accessible to the
specific request that created it (a stored procedure, for example) or to all
requests

Þ Instructing the DBMS to make a copy of the retrieved data (as opposed to
pointing to the live data in the table) so that data does not change between
the time the cursor is opened and the time it is accessed

Cursors are used primarily by interactive applications in which users need to scroll up
and down through screens of data, browsing or making changes.

Working with Gursors
Using cursors involves several distinct steps:

Þ Before a cr¡rsor can be used, it must be declared (defined). This process does
not actually retrieve any data, it merely defines the seLEcr statement to be
used and any cursor options.

Þ Once it is declared, the cursor must be opened for use. This process actually
retrieves the data using the previously defined snr,Ecr statement.

> With the cursor populated with data, individual rows can be fetched
(retrieved) as needed.

Þ When it is done, the cursor must be closed and possibly deallocated
(depending on the DBMS).

Once a cursor is declared, it may be opened and closed as often as needed. Once it is
open, fetch operations can be performed as often as needed.

Greating Gursors
Cursors are created using the DECLARE statement, which differs from one DBMS to thc
next, ÐECLARE names the cursor and takes a sEr,Ecr statement, complete with w¡¡pen
and other clauses if needed. To demonstrate this, we'll create a cursor that retrieves all
customers without email addresses, as part of an application enabling an operator to
provide missing email addresses.

Here is the DB2, MariaDB, MySQL, and SQL Server version:

lnput v
ÐECLARE Custcursor CURSOR
FOR
SELECT * FROM CusLomers
WHERE cust email IS NULL;

Working with Cursors

Here is the Oracle and PostgreSQl version:

lnput v
DECLÄRE CURSOR Custcursor
IS
SELECT * FROM Customers
WHERE cust_email IS NULL;

Analysis v
In both versions, the oscLARs statement is used to define and name the cursor-in this
case, custcursor. The sELEcr statement defines a cursor containing all customers
with no email address (a ruur,r, value).

Now that the cursor is defined, it is ready to be opened.

Using Gursors
Cursors are opened using the opEN cuRsoR statement, which is so simple a statement
that most DBMSs support exactly the same syntax:

lnput v
OPEN CIJRSOR Cuslcursor

Analysis v
When the opEN cuRsoR statement is processed, the query is executed, and the
retrieved data is stored for subsequent browsing and scrolling.

Now the cursor data can be accessed using the rptcs statement. rurcH specifies the
rows to be retrieved, where they are to be retrieved from, and where they are to be
stored (variable names, for example). The first example uses Oracle syntax to retrieve
a single row from the cursor (the first row):

lnput v
DECLARE TYPE Custcursor IS REF CURSOR

RETURN Customers ?ROWTYPE t
ÐECLARE CustRecord CustomerstROI¡ITYPE
BEGIN

OPEN Custcursor,
FETCH Custcursor INTO CustRecord;
CLOSE Custcursori

END;

I

{

I

I

190 LESSON 21r Using Cursors

Analyeis v
In this example, rnrcr is used to retrieve the current row (it'll start at the first row
automatically) into a declared variable named cusrRecord. Nothing is done with the
retrieved data.

In the next example (again, using Oracle syntax), the retrieved data is looped through
from the first row to the last:

lnput v
DECI,ARE TYPE Cuslcursor IS REF CURSOR

RETURN Cust.orners åROWTYPE ;
DECLARE CustRecord CustomerstROWTYPE
BEGTN

OPEN Cust.Cursor;
LOOP
FETCH Custcursor INTO CustRecord;
EXIT WHEN CustCursoråNOTFOUND ;

END I,OOP;
CLOSE Custcursor.;

END;

Analysis v
Like the previous example, this example uses FETcH to retrieve the current row into
a declared variable named custRecord. Unlike the previous example, the ¡'stcn
here is within a Loop so that it is repeated over and over. The code rxrr wnum

cusrcursor?NorFouND causes processing to be terminated (exiting the loop) when
there are no more rows fti'bê Tétched. Thii eiampïe also ciôes'rio'aètual'þiócessing; in
real-world code you'd replace the . . . placeholder with your own code.

Here's another example, this time using Microsoft SQL Server syntax:

lnput v
DECLARE @cust_id CHAR(10),

@cust_name CIÍAR(50),
@cust_address CIIAR (50),
@cust_city CHÄR(50),
@cust_state CHAR(5),
@cust_zíp CHAR(10),
@cust_country CHAR (50),
@cus!_contact C1IAR (50),
@cust email CHAR(255)

Working with Cursors 191

OPEN custcursor
!'ETCI{ NEXT FROM Custcursor

INTO @cust_id, @cust_name, @cust_address,
@cust_city, @cust_state, @cust_zip,
@cust_country, @cust_contac!, @cust_email

WHII,E @@FETCH_STATUS = 0
BEGTN

FETCH NEXT FROM Custcursor
INTO @cust_id, @cust_name/ @cust_address,

@cust_city, @cust_state, @cuÊt_zip,
@cust country, @cust_contact, @cust_email

END
CLOSE Cugtcursor

Analysis v
In this example, variables are declared for each ofthe retrieved columns, and the
FETc$ statements retrieve a row and save the values into those variables. A wnrr,u loop
is used to loop through the rows, and the condition lvHrLE @@FETCH_sIATUS = 0

causes processing to be terminated (exiting the loop) when there are no more rows to
be fetched. Again, this example does no actual processing; in real-world code you'd
replace the . . . placeholder with your own code.

Glosing Gursors
As already mentioned and seen in the previous examples, cursors need to be closed
after they have been used. In addition, some DBMSs (such as SQL Server) require
that the resources used by the cursor be explicitly deallocated. Here's the DB}
Oracle, and PostgreSQl syntax;

lnput v
CIJOSE Custcursor

Here's the Microsoft SQL Server version:

lnput v
CLOSE Cugtcursor
DEALLOCATE CURSOR Custcursor

192 TESSON 21: Using Gursors

Analysis v
The cr,ose statement is used to close cursors; once a cursor is closed, it cannot be
reused without being opened again. However, a cursor does not need to be declared
again to be used; an opEN statement is sufficient.

Summily
In this lesson, yorr were introduced to_9urs9¡, wh¡rt they are, and wly they are used.
Your own DBMS probably offers somè form of this function, as wèlt as others not
mentioned here. Refer to your neIvtS documentation for more details.

,:>.

3.

r.l

l

i:

rì

LESSON 22

U nderstandi ng Advanced
SQt Features

In this lesson, you'll look at several of the advanced data manipulationfeatures thnt
have evolved with SQL: canstrøints, índexes, anà triggers.

Understanding Gonstraints
SQL has evolved through many versions to become a very complete and powerful
language. Many of the more powerful features are sophisticated tools that provide you
with data manipulation techniques such as constraints.

Relational tables and referential integrity have both been discussed several times in
prior lessons. As I explained in those lessons, relational databases store data broken
into multiple tables, each of which stores related data. Keys are used to create
references from one table to another (thus the term referential integrity).

For relational database designs to work properly, you need a way to ensure that
only valid data is insefed into tables. For example, if the orders table stores order
information and orderrterns stores order details, you want to ensure that any order
IDs referenced in orderltems exist in orders. Similarly, any customers referred to in
orders must be in the customers table.

Although you can perform' checks before inserting new rows (do a sulrcr on another
table to make sure the values are valid and present), it is best to avoid this practice for
the following reasons:

> If database integrity rules are enforced at the client level, every client is
obliged to enforce those rules, and inevitably some clients won't.

Þ You must also enforce the rules on upÐAre and our,sre operations.

> Performing client-side checks is a time-consuming process. Having the
DBMS do the checks for you is far more efficient.

(

t

Rules that govern how dãtaþAse data is inserted oi manipulated.

CAûliOi\: Gonstraints Are DBMS Specific
There are several dífferent types of constraints, and each DBMS provides its
own level of support for them. Therefore, the examples shown here might not
work as you see them. Refer to your DBMS documentation before proceeding.

194 LËS$åßFl *å: Understanding Advanced SQL Features

DBMSs enforce referential integrity by imposing constraints on database tables. Most
constraints are defined in table definitions (using cneerr IABLE oTALTER TABLE as

discussed in Lesson lT, "Creating and Manipulating Tables").

Primary Keys
Lesson 1, "Understanding SQL," briefly discussed primary keys. A primary key is
a special constraint used to ensure that values in a column (or set ofcolumns) are
unique and never change-in other words, a column (or columns) in a table whose
values uniquely identify each row in the table. This facilitates the direct manipulation
of and interaction with individual rows. Without primary keys, it would be difficult to
safely use upDArE or DELcTE on specific rows without affecting any others.

Any column in a table can be established as the primary key, as long as it meets the
following conditions:

Þ No two rows may have the same primary key value.

> Every row must have a primary key value. (Columns must not enable ¡rur,1
values.)

> The column containing primary key values can never be modified or
updated. (Most DBMSs won't enable this, but if yours does enable doing so,
well, don't!)

> Primary key values can never be reused. If a row is deleted from the table,
its primary key must not be assigned to any new rows.

One way to define primary keys is to create them as follows:

lnput v
CREÀTE TABLE Vendors

vend-id CHAR (10)
vend_name CHAR (50)
vend_address CHAR (50)
vend_cit.y CHAR (50)

vend_state CHAR (5)
vend_zip CHAR(10)
vend_country CI{AR(50)

);

NOT NULI, PRTMARY KEY,
NOT NULL,
NULL,
NULL,
NULL.
NULL,
i'{üLL

Understanding Constraints 195

Analysis v
In the above example, the keyword pRrMARy xsv is added to the table definition so
that vend_ld becomes the primary key.

lnput v
ALTER TABLE Vendors
ADD CONSTRAINT PRIMARY KEY (vend íd);

Analysis v
Hcrc thc somc column is dcfincd as thc primary kcy, but thc coNsrR-A;rr syntax is
used instead. This syntax can be used in cnrere reeLs and Ar,rER IABLE statements.

Foreigfn Keys
A foreign key is a column in a table whose values must be listed in a primary key in
another table. Foreign keys are an extremely important part of ensuring referential
integrity. To understand foreign keys, let's look at an example.

The orders table contains a single row for each order entered into the system.
Customer information is stored in the customers table. Orders in the orders table
are tied to gpecific rows in the cuslomers table by the customer ID. The customer ID
is the primary key in the customers table; each customer has a unique ID. The order
number is the primary key in the orders table; each order has a unique number.

The values in the customer ID column in the orders table are not necessarily unique.
If a customer has multþle orders, there will be multiple rows with the same customer
ID (although each will h¿ve a different order number). At the same time, the only val-
ues that aro valid within the customer ID column in orders are the IDs of customers
in the cust.omers table.

That's what a foreign key does. In our example, a foreign key is defined on the
customer ID column in orders so that the column can accept only values that are in
the cust,omers table's primary key.

LESSON 22: Understanding Advanced SQL Features

Here's one way to define this foreign key:

lnput v
CREATE TABLE Orders
(

order_num INTEGER
order_date DATETTME
cust_id CHAR(L0)

);

NOT NUIJL PRTMARY KEY
NOT NULL,
NOT NULL REFERENCES Custoners (cust id)

Analysis v
Here the table definition uses the REFERENcEs keyword to state that any values in
cust_id must be in cust_íd in the customers table.

The same thing can be accomplished using coNsrRAtNT syntax in an Ar,rER rABr,E
statement:

lnput v
åI,TER TABLE Orders
ADÐ CONSTRAINT
FOREIGN KEY (cust_id) REFERENCES Customers (cust_id);

Unique Gonstraints
Unique constraints are used to ensure that all data in a column (or set of columns) is
unique. They are similar to primary keys, but there are some important distinctions:

> A table can contain multiple unique consffaints, but only one primary key is
allowed per table.

Customers order

Gan PloventTIP: ForêigFt

Understanding Constraints 197

> Unique constraint columns can contain r¡u¡,r, values.

> Unique constraint columns can be modified or updated.

> Unique constraint column values can be reused.

> Unlike primary keys, unique constraints cannot be used to define foreign keys.

An example of the use of constraints is an employees table. Every employee has a
unique Social Security number, but you would not want to use it for the primary key
because it is too long (in addition to the fact that you might not want that information
easily available). Therefore,, every employee also has a unique employee ID (a primary
key) in addition to a Social Security number.

Because the employee ID is a primary key, you can be sure that it is unique. You also
might want the DBMS to ensure that each Social Security number is unique too (to
make sure that a typo does not result in the use of someone else's number). You can
do this by defining a uNret¡E constraint on the Social Security number column.

The syntax for unique constraints is similar to that for other constraints. Either the
uNreuE keyword is defined in the table definition, or a separate coNSrRArNr is used.

Check Gonstraints
Check constraints are used to ensure that data in a column (or set of columns) meets a
set of criteria that you specify. Common uses of this are

> Checking minimurn or maximum values-For example, preventing an
order of o (zero) items (even though 0 is a valid number)

> Specifying ranges-For example, making sure that a ship date is greater
than or equal to today's date and not greater than a year from now

> Allowing only specifTc values-For example, allowing only u or r in a
gender field

In other words, datatypes (discussed in Lesson 1) restrict the type of data that can be
stored in a column. Check constrainfs place further restrictions within that datatype,
and these can be invaluable in ensuring that the data that gets inserted into your
database is exactly what you want. Rather than relying on client applications or users
to get it right, the DBMS itself will reject anything that is invalid.

i

l"ËSsOF,l ãår Understanding Advanced SQL Features

The following example applies a check constraint to the ordertteme table to ensure
that all items have a quantity gteatff than 0:

lnput v
CREATE TABLE Orderltems
(

order_num INTEGER
order item INTEGER
prod_id
quantity
item3rice

CHAR (10)

IÑTEGER
MONEY

NOT NULL,
NOT NULL,
NOT NULL,
I.JOT NULL CHECK (quantity > 0),
NOT NL}LL

);

Analysis v
With this constraint in place, any row inserted (or updated) will be checked to ensure
that quancity is greater than o.

To check that a column named gender contains only tø or F, you can do the following
in an er,rsR. TABLE statement:

lnput v
AÐD CONSTRAITÍT CHECK (gender LIKE ' [MF] ') ;

Understanding lndexes
Indexes are used to sort data logically to improve the speed of searching and sorting
operations. The best way to understand indexes is to envision the index at the back of
a book (this book, for example).

Suppose you want to find all occunences of the word datatype in this book. The
simple way to do this would be to tum to page I and scan every line of every page
looking for matches. Although that works, it is obviously not a workable solution.

TIP: UsenDefined Datatypea
Some DBMSs enable you to define your own datatypes. These are essent¡ally
simple datatypes with check constraints (or other constraints) defined. For
example, you'can öefine your own äátätype câtted s""ää' thât is'â s¡ñgl+
character text datatype with a check constraint that restricts its values to M or F
(and perhaps rur.r, for Unknown). You could then use this datatype in table defi-
nitions. The advantage of custom datatypes is that the constraints need to be
applied only once (in the datatype definition), and they are automatically applied
each time the datatype is used. Check your DBMS documentation to determine
if user-defined datatypes are supported.

Understanding lndexes 199

Scanning a few pages of text might be feasible, but scanning an entire book in that
manner is not. As the amount of text to be searched increases, so does the time it takes
to pinpoint the desired data.

That is why books have indexes. An index is an alphabetical list of words with
references to their locations in the book. To search for datatype, you find that word
in the index to determine what pages it appears on. Then, you tum to those specific
pages to find your matches.

What makes an index work? Simply, it is the fact that it is sorted correctly. The
difficulty in finding words in a book is not the amount of content fhat must be searched;
rather, it is the fact that the content is not sorted by word. Ifthe content is sorted like a
dictionary, an index is not needed (which is why dictionaries don't have indexes).

Database indexes work in much the same way. Primary key data is always sorted;
that's just something the DBMS does for you. Retrieving specific rows by primary
key, therefore, is always a fast and efficient operation.

Searching for values in other columns is usually not as efficient, however. For exam-
ple, what if you want to retrieve all customers who live in a specific state? Because
the table is not sorted by state, the DBMS must read every row in the table (starting at
the very first row) Iooking for matches, just as you would have to do if you were try-
ing to find words in a book without using an index.

The solution is to use an index. You may define an index on one or more columns so
that the DBMS keeps a sorted list of the contents for its own use. After an index is
defined, the DBMS uses it in much the same way as you would use a book index. It
searches the sorted index to find the location of any matches and then retrieves those
specific rows.

But before you rush off to create dozens of indexes, bear in mind the following:

Þ Indexes improve the performance ofretrieval operations, but they degrade
the performance of data insertion, modification, and deletion. When these
operations are executed, the DBMS has to update the index dynamically.

> Index data can take up lots of storage space.

Þ Not all data is suitable for indexing. Data that is not sufficiently unique
(State, for example) will not benefit as much from indexing as data that has
more possible values (First Name or Last Name, for example).

) Indexes are used for data filtering and for data sorting. Ifyou frequently sort
data in a specific order, that data might be a candidate for indexing.

> Multiple columns can be defined in an index (for example, State plus City).
Such an index will be of use only when data is sorted in State plus City
order. (If you wanf to sort by City, this index would not be of any use.)

t ES$OÈ'¡ 22: Understanding Advanced SQL Features

There is no hard-and-fast rule as to what should be indexed and when. Most DBMSs
provide utilities you can use to determine the effectiveness of indexes, and you should
use these regularly.

Indexes are created with the cREATE rNDEx statement (which varies dramatically
from one DBMS to another). The following statement creates a simple index on the
products table's product name column:

¡nput v
CREATE INDEX prod_name_ind
ON Products (prod_name) ;

Analysis v
Every index must be uniquely named. Here the name prod_name_ind is defined after
the keywords cREATE rNDEx. oN is used to specify the table being indexed, and the
columns to include in the index (ust one in this example) are specified in parentheses
after the table name.

TiP: Revisiting lndoxos
lndex effectiveness changes as table data is added or changed. Many. database
administrators find that what once was an ideal set of indexes might not be
so ideal after several months of data manipulation. lt is always a good idea to
revisit indexes on .a regular basis to finetune them as'needed.

Understandi ng Trigl¡fers
Triggers are special stored procedures that are executed automatically when specific
database activity oÇcurs. Triggers might be associated with rusuRr, upDarn, and
ÐELETE operations (or any combination thereof) on specific tables.

Unlike stored procedures (which are simply stored SQL statements), triggers are tied
to individual tables. A trigger associated with nrsrnr operations on the orders table
will be executed only when a row is inserted into the orders table. Similarly, a trigger
on TNsERT and uppars operations on the cusromers table will be executed only when
those specific operations occur on that table.

Within triggers, your code has access to the following:

> All new data in rNsERr operations

Þ All new data and old data in upoeqe operations

> Deleted data in DELETE operations

Understanding Triggers 20t

Depending on the DBMS being used, triggers can be executed before or after a
specified operation is performed.

The following are some common uses for triggers:

> Ensuring data consistency; for example, converting all state names to
uppercase during an rNsERr or upDArE operation

> Performing actions on other tables based on changes to a table; for example,
writing an audit trail record to a log table each time a row is updated or
deleted

> Performing additional validation and rolling back data if needed; for
example, making sure a customer's available credit has not been exceeded
and blocking the insertion if it has

> Calculating computed column values or updating time stamps

As you probably expect by now, trigger creation syntax varies dramatically from one
DBMS to another. Check your documentation for more details.

The following example creates a trigger that converts the cust_state column in the
customers table to uppercase on all rrqseRr and UIDATE operations.

This is the SQL Server version:

lnput v
CREATE TRIGGER custome,r state
ON Custoners
FOR INSERT, UPDATE
AS
UPDATE Customers
SET cust_state = Upper(cust_state)
WHERE CusÈomers.cust id = inserled.cust idi

This is the Oracle and PostgreSQl version:

lnput v
CREATE TRÏGGER customer sIaIe
AFTER INSERT OR UPDATE
FOR EACH ROW

BEGIN
UPDATE Customers
SET cus!_state = Upper(cus!_staËe)
WHERE Customers.cust id = :OLD.cust íd
END;

.¡.n;, .1;,-, ,.¡1¡:,1:¡:.1,.,lliit ;

i:ì:ìl :,;ìj..: i.i:ìiiËt:¡:ì:li:r:r..:t; : :

.1!i I ri::i: I I il ,ìaa::,:i: ìr:t:',ì.. j,j:_:::l l.r.::r':,r..:.,:.,:t

202 e"HS$GFd *#r Understanding Advanced SQL Features

possible, use constraints instead.

Database Seourity
There is nothing more valuable to an organization than its data, and data should
always be protected from would-be thieves or casual browsers. Of course, at the same
time data must be accessible to users who need access to it, and so most DBMSs
provide administrators with mechanisms by which to grant or restrict access to data.

The foundation of any security system is user authorization and authentication. This
is the process by which a user is validated to ensure he is who he says he is and that
he is allowed to perform the operation he is trying to perform. Some DBMSs integrate
with operating system security for this, others maintain their own user and password
Iists, and still others integrate with extemal directory services servers.

Here are some operations that are often secured:

Þ Access to database administration features (creating tables, altering or
dropping existing tables, and so on)

Þ Access to specific databases or tables

> The type of access (read-only, access to specific columns, and so on)

Þ Access to tables via views or stored procedures only

Þ Creation of multiple levçls of seçurity, thus allowing varying degrees of
access and control based on login

Þ Restrictions on the ability to manage user accounts

Security is managed via the SQL ceam and Rnvoxr statements, although most
DBMSs provide interactive administration utilities that use the enexr and Rnvorn
statements internally.

Summany
In this lesson, you learned how to use some advanced SQL features. Constraints are
an important part of enforcing referential integrity; indexes can improve data retrieval
performance; triggers can be used to perform pre- or post-execution processing; and
security options can be used to manage data access. Your own DBMS probably offers
some form of these features. Refer to your DBMS documentation for more details.

APPENÞIX A

Sample Table Scripts

Writing SQL statements requires a good understanding of the underþing database
design. If you do not know what information is stored in what table, how tables are
related to each other, and the actual breakup of data within a row, it is impossible to
write effective SQL.

You are strongly advised to actually try every example in every lesson in this book.
All the lessons use a common set of data files. To assist you in better understand-
ing the examples, and to enable you to follow along with the lessons, this appendix
describes the tables used, their relationships, and how to build (or obtain) them.

Understanding the Sample Tables
The tables used throughout this book are part of an order entry system used by
an imaginary distributor of toys. The tables are used to perform several tasks:

> Manage vendors

> Manage product catalogs

> Manage customer lists

Þ Bnter customer orders

Making this all work requires five tables (that are closely interconnected as part
of a relational database design). A description of each of the tables appears in the
following sections.

canYou

systern
The

SlmpllflertNOTE:

tables used
Examples

complete A

your

real.world
not

order entry
been

204 APPEND¡X A: Sample Table Scripts

Table Descriptions
'What follows is a description of each of the five tables, along with the name of the
columns within each table and their descriptions.

The vendors Table
The vendors table stores the vendors whose products are sold. Every vendor has
a record in this table, and that vendor ID (the vend_id) column is used to match
products with vendors.

TABLE 4.1 vendors Table Columns
Golumn Description

vend_id
vend_name
vend_address
vend_cíty
vend_sLate
vend_zip
vend_country

Unique vendor lD

Vendor name
Vendor address
Vendor city
Vendor state
Vendor ZIP code
Vendor country

> All tables should have primary keys defined. This table should use vend id
as its primary key.

The producus lable
The products table contains the product catalog, one product perrow. Each product
has a unique ID (the prod_id column) and is related to its vendor by vend_íd (the
vendor's unique ID).

TABTE 4.2 Products Table Columns

Column Description

prod_id Unique product lD
vend-id Product vendor lD (relates to vend ia in vendors table)
prod_name PrOduCt name
prod3rice Product price
prod*desc Product description

Understanding the Sample Tables 205

> All tables should have primary keys defined. This table should use prod id
as its primary key.

Þ To enforce referential integrity, a foreign key should be defined on vend id
relating it to vend_id in veNDoRs.

thê cuetoners Table
The cusromers table stores all customer information. Each customer has a unique ID
(the cust_id column).

TABTE 4.3 cust,ùrìers Table Columns
Column Descrlption

cust id
cust_name
cust address
cust_city
cust_state
cust_zip
cus!_counfry
cust_conËact
cust. emaí1

order_num
order_da¿e
cust id

> All tables should have primary keys defined. This table should use cust id
as its primary key.

The ordere lable
The orders table stores customer orders (but not order details). Each order is uniquely
numbered (the order_num column). Orders are associated with the appropriate
customers by the cusr_id column (which relates to the customer's unique ID in the
customers table).

IABTE 4.4 orders Table Columns

Column Descrlption

Unique customer lD

Customer name
Customer address
Customer city
Customer state
Customer ZIP code
Customer country
Customer contact name
Customer contact email address

Unique order number
Order date
Order customer lD (relates to cust id in customers table)

206 APPENÐ¡X A: Sample Table Scripts

> All tables should have primary keys defined. This table should use
order_num as its primary key.

Þ To enforce referential integrity, a foreign key should be defined on cusr id
relating it to cust_id in custot{aes.

The order¡te¡rs Table
The orderrterns table stores the actual items in each order, one row per item per
order. For every row in orders there are one or more rows in orderrterns. Each
order item is uniquely identified by the order number plus the order item (first item
in order, second item in order, and so on). Order items are associated with their
appropriate order by the order_num column (which relates to tlte order's unique ID
in orders). In addition, each order item contains the product ID of the item orders
(which relates the item back to the products table).

TABTE 4.5 orderrtems ïable Columns
Golumn Descrlptlon

order_num
order_item
prod_id
quanÈity
item3ríce

Order number (relates to order_num in or¿ers table)
Order item number (sequential within an order)
Product lD (relates to prod_íd in products tabl€)
Item quantity
Item price

> All tables should have primary keys defined. This table should use
order_num and order_item as its primary keys.

Þ To enforce referential integrity, foreign keys should be defined on order_num
relating it to order_num in orders and prod-íd relating it to proa_ia in
Products.

Database admirústrators often use relationship diagrarus to help der¡ronstral.e how data-
base tables are connected. Remember, it is foreign keys that define those relationships
as noted in the table descriptions above. Figure 4.1 is the relationship diagram for the
five tables described in this appendix.

t

tT [nd-ld
wnd-nrnÊ
[nd_tddrarÉ
wnd_dty
End_rtrta
wnd_rlÞ
wnd_(ountry

Yerdom

I (u5t-ld
curt-nrmr
cust_iddrast
.u5t_.if
aurt-tt¡t!
s!t_¡p
cu¡L(oü¡ùt
erLmnt¡d
.urt_!ñ¡ll

Cutüfr6

ænd_ld
prgd_nrnc
prodJrrlce
prod_da5(

V ardlr-num
ordar_d¡t.
ilit-ld

OrdÊ6
o¡dar_num

! ordrr-¡ten
ptod-id
quantity
it.n_pr¡..

Order{tems

Obtaining the Sample Tables

F¡GURE 4.1 Sample tablçs relationship diagram

Obtaining the Sample Tables
In order to follow along with the examples, you need a set of populated tables.
Everything you need to get up and running can be found on this book's web page at
}f,Llp t / / t qrta. com/books / 0]-35L827 94 /,
On that page you'll find links to download SQL scripts for your DBMS. There are two
files for eaçh:

Þ create.txt contains the SQL statements to create the five database tables
(including defining all primary keys and foreign key constraints).

Þ populate. txt contains the SQL TNSERT statements used to populate these
tables.

The SQL statements in these files are very DBMS specific, so be sure to execute the
one for your own DBMS, These scripts are provided as a convenience to readers, and
no liability is assumed for problems that may arise from their use.

At the time that this book went to press, scripts were available for

> IBM DB2 (including Db2 on Cloud)

Þ Microsoft SQL Server (including Microsoft SQL Server Express)

> MariaDB

207

APPENDIX A: Sample Table Scripts

> MySQL

Þ Oracle (include Oracle Express)

> PostgreSQl

> SQLite

î¡F': SQL¡te Data File
SQLite stores its data in a single file. You can use the creation and population
scripts to create your own SQLite data file. Or, to make things easier, you can
download a ready-to-use file from the URL aþove.

Other DBMSs may be added as needed or requested.

NOTE: Greate, then Populate
You must run the table creation scripts'before the table population scripts.
Be sure to check for any error messages returned by these scripts. lf the
creation scripts fail, you will need to remedy whatever problem may exist before
continuing with table popUlg,tjql: : ::. , . :.

\iOTE: Specific DBMS Setup Instructions
The specific steps used to set up your DBMS vary greatly based on the DBMS

y,ou download the scripts or databases ffom
README file that provides specific setup and

used,
you'll

When

specific DBMSs
find a

(-'

C",

a,
(,

Ci,,'

APPENDIX B

SQL Statement Syntax

(. To help you find the syntat you need when you need it, this,appendix lists the syntax
for the most frequently used SQL operations. Each statement starts with a brief
description and then displays the appropriate syntax. For added convenience, youlll
also find cross-teferences to the lessons where specific statements are taught.

When reading statement syntax, remember the following:

> The I symbot is used to indicate one of several options, so rur,r, lNor rur,r,
means specify either rur,r, or Nor NULL.

Þ Keywords or clauses contained within square brackets llilce irrisl are'
optional.

> The syntax lisûed below will work with almost all DBMSs. You are advised
to consult your own DBMS documentation for details of implementing
specific syntâctical cfianges.

, AT.TER TABI.E
ALIER IABLE is used to updaûe the schema of an existing table. To create a new table,
use cREATE TABLE. See Lesson 17 , "Creaitng and Manipulating Tableso" for more
information.

lnput v'
ALTER TÃBLE Tablenane
(

ADDIDROP column datatl4)e
eoolonof column datat)4)e

li

(,1

l(,ir:l

I

{

(,

1

(.i

I

L.¡

INULL
tNI'LL

NOT NT]I,L]
NOT NULL]

ICONSTRATÑTS] ,
ICONSTR.ATNTSI ,

)¡

!l\¡ EOMMTT
i--(i- ,.----.cst'¡ulsis-use&to*w¡ite-a-mnsaetion-ts,tlee-database..-See,Lesson20::-lvlanaging .,

U.

(,
(,-i

i

1

')

Transaction Processing," firr more information.

APPET,ûDIX B: SQL Statement Syntax

frm¡rut e
COMMIT [TRANSACTION];

CREATE INDEX
cREATE rNoex is used to create an index on one or more columns. See Lesson 22,
"Understanding Advanced SQL Features," for more information.

Ë¡rput w
CREATE INDEX indexname
oN tablename (column, ...);

CREATE PROCEDURE
cREATE pRocEÐuRE is used to create a stored procedure. See Lesson 19, "Work-
ing with Stored Procedures," for more information. Oracle uses a different syntax as

described in that lesson.

*npcrt "v

CREATE PRoCEDURE procedurename lparameters] [optionsl
AS
sQL statements;

EREATE TABLE
cREATE reer,n is used to create new database tables. To update the schema of an
existing table, use Ar,rER rABr,E. See Lesson 17 for more information.

lmput v"

CREATE TABLE Iab].ename

column
column

datatl¡pe
dâtatlæe

lwuu. lr.ror sur.i,l
lwulr, luor uui,r.l

lcoNsTRArNTSl ,
ICONSTRATNTS] ,

)¡

ÏNSERT 2tt

CREATE VIEW
cREATE vrgw is used to create a new view ofone or more tables. See Lesson 18,
"Using Views," for more information.

lnput w'

CREATE VIE!{ vievrname AS
SELECT ceLumns,
FROM tables, .,.
trfHERE . . .1
IGROUP BY ...]
lHAVrNc...l,

DELETE
DEIETE deletes one or more rows from a table. See Læsson 16, "Updating and Delet-
ing Data," for more information.

lnput w
DELETE FROM Tablename
IWHERE.,.1;

ÐROP
DRop permanently removes database objects (tables, views, indexes, and so forth). See
Lessons 17 and 18 for more information.

lnput w
oRon rtoEx I PRocEDURE I ranr,n I vrnw indexname I procedurename I tablename I

viewname;

INSERT
TNSERT adds a single row to a table. See Lesson 15, "Inserting Data," for more
information.

lnput w
INSERT INTO tablenane [(cofumns, . ..)]
VALUES(values, ...);

2L2 APPENDIX B: SQL Statement Syntax

INSERT SETECT
rNsERr sEr,Ecr inserts the results of a sELEcr into a table. See Lesson 15 for more
information.

f,nput w
INSERT INTO tablenarne [(columns, ...)]
SEI,ECT columns, ... FROM tablename,
IWHERE ...1;

ROLLBACK
Ror,r,BAcK is used to undo a transaction block. See Lesson 20 for more information.

Input v'
ROLLBACK ITO savepointname] ;

ñnput w
ROLLBACK TRANSACTTON;

SELECT
snr,Ecr is used to retrieve data from one or more tables (or views). See Lesson 2,
"Retrieving Data," Lesson 3, "Sorting Retrieved Data," and Lesson 4, "Filtering
Data," for more basic information. (Lessons 2-14 cover aspects of snr,ncr.)

ünput w
SELECT columnname,
FROM tablename,
I?ùHERE ...]
lnNroN . . .1
IGROUP BY ...]
IHAVING ...]
loRDERev...l;

or

UPD.A.TE

UPDATE
upDArE updates one or more rows in a table. See l-æsson 16 for more information.

tmPext ''ir

UPDATE tablename
SET columname = value,
lllHERE ...1;

a1a

WsHmg SQL Dataüypes

As explained in Lesson 1, "Understanding SQL," datatypes are essentially rules that
define what data may be stored in a column and how that data is actually stored.

Datatypes are used for several reasons:

Þ Datatypes enable you to restrict the type of data that can be stored in a
column. For example, a numeric datatype column will only accept numeric
values.

Þ Datatypes allow for more efficient storage, internally. Numbers and date-
time values can be stored in a more condensed format than text strings.

> Datatypes allow for altemate sorting orders. If everything is treated as

strings, 1 comes before :"0, which comes before z. (Strings are sorted in
dictionary sequence, one character at a time starting from the left.) As
numeric datatypes, the numbers would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used. Using the
wrong datatype can seriously impact your application. Changing the datatypes of
existing populated columns is not a trivial task. (In addition, doing so can result in
data loss.)

Although this appendix is by no means a complete tutorial on datatypes and how
they are to be used, it explains the major datatype types, what they are used for, and
compatibility issues that you should be aware of.

::i:i r¡ri)r\t: No Two DBMS8 Are Exacüy Alike
It's been said before, but it needs to be said again. Unfortunately, datatypes can
vary dramatically from one DBMS to the next. Even the same datatype name
can mean different things to different DBMSs. Be sure you consult your DBMS
documentation for details on exactly what it supports and how

216 APPSNÞ¡X C: Us¡ng SQL Datatypes

String Datatypes
The most commonly used datatypes are string datatypes. These store strings: for
example, names, addresses, phone numbers, and ZIP codes. There are basically two
types of string datatypes that you can use-fixedJength strings and variable-length
strings (see Table C.1).

Fixed-length strings are datatypes that are defined to accept a fixed number of
characters, and that number is specified when the table is created. For example,
you might allow 30 characters in a fust-name column or I I characters in a Social-
Security-number column (the exact number needed allowing for the two dashes).
Fixed-length columns do not allow more than the specified number of characters.
They also allocate storage space for as many characters as specified. So, if the string
een is stored in a 3O-character fìrst-name field, a full 30 characters are stored (and the
text may be padded with spaces as needed).

Variable-length strings store text of any length (the maximum varies by datatype and
DBMS). Some variable-length datatypes have a fixed-length minimum. Others are
entirely variable. Either way, only the data specified is saved (and no extra data is
stored).

If variablelength datatypes are so flexible, why would you ever want to used fixed-
length datatypes? The answer is performance. DBMSs can sort and manipulate
fixed-length columns far more quickly than they can sort variable-length columns.
In addition, many DBMSs will not allow you to index variable-length columns (or
the variable portion of a column). This also dramatically impacts performance. (See
Lesson 22, "Understanding Advanced SQL Features," for more information on
indexes.)

TABTE C.1 String Datatypes

Datatype Description

CHAR Fixedlength stringfrom !to255 characters long. lts
size must be specified at create time.
Special form of cxan designed to support multibyte
or Unicode characters. (ïhe exact specifications vary
dramatically from one implementation to the next.)
Special form of ruxr designed to support multibyte or
Unicode characters. (Exact specifications vary dramati-
cally from one implementation to the next.)
Variablelength text.

NCHAR

rnxr (also called r,o¡rc
or MEMo or vancHan)

NVARCHAR

Numeric Datatypes 217

;;- UsinÉ euotes
Regardless of the form of string datatype being used, string values must always
be surrounded by single quotes.

rlAii-i-l0Ni: When Numedc Valueg Are Not Numeric Values
You might think that phone numbers and ZIP codes should be stored in numeric
fields (after all, they only store numeric data), but doing so would not be advis-
able. lf you store the ZIP code 01234 in a numeric field, the number 1234
would be saved. You'd aatually lose a digit.
The basic rule to follow is: lf the number is a number used in calculations
(sums, averages, and so on), it belongs in a numer¡c datatype column. lf it is
used as a literal string (that happens to contain only digits), ¡t belongs ín a
string datatype column.

Numeric Datatypes
Numeric datatypes store numbers. Most DBMSs support multiple numeric datatypes,
each with a different range of numbers that can be stored in it. Obviously, the larger
the supported range, the more storage space needed. In addition, some numeric
datatypes support the use ofdecimal points (and fractional numbers), whereas others
support only whole numbers. Table C.2lists common uses for various datatypes, but
not all DBMSs follow the exact naming conventions and descriptions listed here.

TABLE C.2 Numeric Datatypes
Datatype Description

BIT Single-bit value, either o or r, used primarily for
onloff flags
Fixed or floating-point values with varying levels
of precision
Floating-point values
4byte integer value that supports numbers from
-21,47 4a3648 to 21,47 483647
4-byte floating:point values
2-byte integer value that supports numbers from
-32764Io 32767
l-byte integer value that supports numbers from
0 to 255

ÐEcrMAL (also called
rruuenrc)
rr,oer (also called rnruenn)

rur (also called rurecnn),

REAI.

SMALLINT

TINYINT

2t8 . ; r:, , .i'- ' : Using SQL Datatypes

, Not Using! Quotes
Unlike strings, numeric values should never be enclosed with¡n quotes.

' Gurrency Datatypes
Most DBMSS support a special numeric datatype for storing monetary values.
Usually called ruromev or cuRRENcy, these datatypes are essentially orcrnar,
datatypes with specific ranges that make them well suited for storing currency
values.

Date and Time Datatypes
All DBMSs support datatypes designed for the storage of date and time values (see

Table C.3). Like numeric values, most DBMSs support multiple datatypes, each with
different ranges and levels of precision.

TABLE C.3 Date and Time Datatypes
Datatype Descdptlon

DATE Date value
Date-time values
Date-time values with accuracy to the
minute (no seconds or milliseconds)
Time value

DATETTME (also known as rrr"rusrarøe)

, SpecifyinÉ Dates
There is no standard way to define a date that will be understood by every
DBMS. Most implementations understand formats like zozo-tz-to or
Dec 3Orh, 2020, but even those can be problematic to some DBMSS. Make
sure to consult your DBMS documentation for a list of the date formats that it
w¡ll recognize.

ODBG Dates
Because every DBMS has its own format for specifying dates, ODBC created a
format of ¡ts own that will work with every database when ODBC is being used.
The ODBC format looks like {d ,2020-r2-30' } for dates, {t '2!:46.2e'} for
times, and {ts 'zoz0-t2-30 27:46:2e '} for date-time values. lf you are using
SQL via ODBC, be sure your dates and times are formatted in this fashion.

SMAI]LDATETIME

TIME

Binary Datatypes 219

Binary Datatypes
Binary datatypes are some of the least compatible (and, fortunately, also some of the
least used) datatypes. Unlike all the datatypes explained thus far, which have very
specific uses, binary datatypes can contain any data, even binary information, such as

graphic images, multimedia, and word processor documents (see Table C.4).

ÌABtË C.4 Binary Datatypes
Datâtype Descdptlon

BINARY

I,ONG RÀW

new (called erxenv by
some implementations)
VARBINARY Variablelength þ¡nary data (maximum length varying

from 255 bytes to 8,00O bytes is typical, depending
on implementation)

i.jt il. , Comparing Datatypes
lf you would like to see a real-world example of database comparisons, look at
the table creation scripts used to build the example tables in this book (see
Appendix A, "Sample Tåble Scripts"). By comparing the scripts used for different
DBMSS, you'll see firsthand just how complex a task datatype matching is.

Fixedlength binary data (maximum length may
vary from 255 bytes to 8,000 bytes, depending on
implementation)
Variable-length binary data up to 2GB
Fixed-length binary data up to 255 bytes

APPENDIX D

SQL Reserved Words

li

(. ,,

/

{,

SQL is a language made up of keywords-special words that are used in performing
SQL operations. Specfal care must be taken fo not use these keywords when naming
databases, tables, columns, and any other database objects. Thus, these keywords are
considered reserved.

This appendix contains a list of the more common reserved words found in major
DBMSs. Please note the following:

Þ Keywords tend to be very DBMS-specific, and not all the keywords that
follow are used by aill DBMSs.

> Many DBMSs have extended the list of SQL reserved words to include
terms specific to their implementations. Most DBMS-specific keywords are
not listed in the following list.

Þ To ensure future compafibitity and portability, it is a good idea to avoid any
and all reserved words, even those not reserved by your own DBMS.

(

{' ,

ABORT

ABSOLIITE

ACTION

ACTTVE

ÃDD

AFTER

ALI,

AIJI'OCATE

Al.TER

ANALYZE

A¡ÏD

ARE

.A,S

.å,sc

escÉrnrnç

ASSERTION

AT

AUTHORÎZAlTON

AtIrO

ATTTO-INCREMENT

AUTOTNC

AVG

BEFORÉ

BEGlN

BETV'TEÉN

BTGTNT

BTNARY

BTT

BLOB

BOOLEÄN

BOTH

BREAK

BROWSE

i

{

(-;

(l

[-
U
L,

.ANY BACKUP BT'LK

222 APPEI{DIX D: SQL Reserved Words ¡' 'lr

.:\

:ì\

r)

-J

BY

BYTES

CACTTE

CA],L

CASCAÐE

.CASCADED

CASE

CONFTRM

CONNECT

CONNECTION

CONSTRATNT

coNsTRAtti¡Ts

.CONTATNTNG

CONÎATÑS

DBCC

DEATIJOCATE

DEBUG

DEC

DECÏMAL

ÐECIJARE

DEFJ{UT,T

CAST CONTAINSTABLE DEIJETE

CATALOG CONTINUE DENY

CHA¡i¡GE CONTROLROW ÐESC

CHAR COÌÍVERT ÐESCENDING

CHARACTER COPY DESCRIBE
^- +¡i{5r*¡¡.,9-#***..sü*¡**jk É-s¡*}¿-i#'$eÈ'*a¡*ê.:*¿¡¿S{+r*{¡¡|+-{i{}¡¡ô -. Ð

CHARACTER_LENGTH COIJIfrT DT.SCONNECT

CHECK CREATE DTSK

CHECKPOIIi¡T CROSS DI.SÍINCT

CLOSE CSTRING DTSTRTBIXTED

CIJ'STER CI'BE DIV

CI,USTERED CURREI\¡:T ÐO

COALESCE

COLLATE

COLT]MN

COLTJMNS

coMMEli¡:r

COMMÏT

COMMTTTED

COMPT]IE

COMPTITEÐ

CONDITIONAÌ,

CURREI.{ÛT-DATE

CT]RR,EÑT-TiME

CT]RRENT-TIMESTÃMP

CTJRRENT-USER

cltRsoR

DATABÀSE

DATAB.A,SES

DATE

DATETTME

DAY

DOMATN

DOUBI,E

DROP

DT]MMY

DI'MP

ELSE

EI"SEIF

ENCI,OSED

ENÐ

ERRI,\rL

'i

ì

i.i

SQL Reserved Words

I

\,,
I

I
(

ERROREXIT

ESCAPE

ESCAPEÞ

EXCEPT

EXCEPTTON

EXEC

EXECUTE

EXïSTg

EXIT

EXPI,AIN

EXTENÐ

EXTERNA],

EXTRACT

FALSE

FETCH

FlELÐ

FIEIÐS

FÏLE

FÏLLFACTOR

FIIJTER

FI,OAT

FLOPPY

FOR

FORCE

FORETGN

FOnlfD

FREETE$T

FREETE$TTABLE

FROM

FULL

FUNCTION

GENER.ATOR

GET

GLOBAL

GO

GOTO

GRANT

GROUP

HAVING

HOLDLOCK

HOIIR

IDENTITY

IF

IN

TNACTIVE

rNDEX

INDICATOR

INFII,E

ÏNNER

TNOUT

INPUT

TNSENSÏTÏVE

INSERT

TNT

INTEGER

ÏNTERSECT

ÏNTERVAL

INTO

TS

TSOLATION

.JOIN

KEY

KILL

LANGUAGE

LAST

LEAÐTNG

LEFT

I,ENGTH

LEVEI,

I,IKE

I,IMIT

IJINENO

LÏNES

LISTEN

LOAD

LOCAL

LOCK

LOGFII,E

I,ONG

T,OWER

MANUAL

MATCH

MAX

MERGE

7?4 APPENDIX D: SQL Reserued Words

OPEN

OPTTON

OR

ORDER

O{ITER

O{ITPIJT

OVER

OVERFLOW

OVERI.APS

PAD

PAGE

PÀGES
.

PARAMETER

PARTI.AL

PASSI4IORÐ

PERCEIüf

PERM

PROCEgSEXU

PROTECTED

PUBI,IC

PI'RGE

RAISERROR

READ

READTEXT

REAL

REFERENCES

REGEXP

REI,ATIVE

RENAME

REPEAT

REPLACE

REPLICATION

REQUIRE

RESERV

MESSAGE

MIN

MTNUTE

MTRROREXÏT

MODULE

MONEY

MONTI{

MOVE

NAMES

NATTONAI,

NATT'R.AT,

NCITAR

NEXT

NE!{

NO

NOCHECK

NONCLUSTERED

NOT

NTJI,I,

NT]I,I,IF

NI,MERIC

OF

OFF

OFFSET

OFFSETS

ON

ONCE

ONI,Y

PIPE

PI,AN

POSTTION

PRECISTON

PREPARE

PRTMARY

PRTIi¡:T

PRÏOR

PRIVTI,EGES

PROC

PROCEDURE

RESET

RESTORE

RESTRlCT

RETAIN

RETI'RN

RETTJRNS

REVOKE

RTGHT

ROIJLBACK

ROLLUP

ROWCOU¡i¡Ìr

(""

RI'LE

SAVE

SAVEPOTNT

SCHEM.A

SECOND

SECTION

SEGMENT

SELSCT

SENSlTIVE

SEPARATOR

SEQUENCE

SESSTON-USER

SET

SETUSER

SHADOI^I

SHARED

sHovil

SHIITÐOV|IN

SÏNGULÄR

STZE

SMATLINT

SNAPSHOT

SOME

SORT

SPA.CE

SQL

sQr,coDE

gQIJERROR

STABTLITY

SQL Reserved Words

ST.ARTING

STARTS

STATÏSTlCS

SUBSTRTNG

SUM

SUSPEND

TABLE

TABLES

TEMP

TEMPORARY

TEXT

TEXTSIZE

THEN

TÏME

TfMESTÀMP

TO

TOP

TRA]LING

TRAN

TRÃNSACTTON

TRÃNST,ATE

TRIGGER

TRIM

TRUE

TRUNCATE

TYPE

UNCOMMTTTEÐ

TJNTON

I'NIOUE

UNTIL

UPDATE

UPDATETEXT

UPPER

USAGE

usE

USER

USÏNG

VALUE

VALUES

VARCITAR

VARIABI,E

VARYTNÕ

VERBOSE

VIEW

VOLTJME

T/fAïT

WATTFOR

V'IHEN

WT{ERE

WHÏLE

WITH

WORK

WRlTE

WRTTETEXT

xoR

YEAR

ZONE

225

I

(

('.

(

(]
(

(

t.

t.

(_

f-,

(.__i

l--,'

(-,

t,.

L,

(

I
BA

c

lndex

aggregate functions, 79-8Q
AVG0,80-81
combining, 86-87
COUÌ'ITO,81-82
DISTINCT keyword, 85-86
MAXO,82-83
MINO,83-84
performing on distinct values, 85-86
suM0,8+85
using with joins, 123-124

aliases, 63*65
naming,87
rable, 117-118

ALL clause, 91

AUIER TABLE statement, 155-157, 196
syntax, 209

Analysis ico"n, 3

ANSr SQL, 10
controlling transactions, 1 82
innerjoin syntax, 113

application filtering, 34
argumenfs, See also keywords

DISTINCT, s5-86
asterisk (*) wildcard, 17

authentication, 202
authoiiåàdon,20i '
AVG$ tunction, 80-81

DISTINCT keyword, 85-86

binary datatypes,2l9
brackets ([]) wildcard, 55-57
breaking up data,7

calculated fields, 59-60
concatenating fields, 6f63
performing mathematical calculations,

65-67
subqueries as, 103-105
testing calculations, 67
using aliases, 63-65
using with views, 168-169

case sensitivity, 30
of SQL, 15

of wildcards, 52
check constraints, I 97-198
choosing the right DBMS, 11-12
clauses, 26. See also operators

ALL,91
GROUP BY,9ç91.,94F95
HAVING,91-94
IS NULL,38_39
ORDER 8Y,26-27,28,42

and GROUP BY, 9'{-95
ordering, 96
quotes, when to use, 37

"l'i

'

(

(,
(..

L,

L,

t,
(.-

¡
T

228

WHERE,33-34
checking against a síngle value,

35-36
checking for a range of values,

37-38
che ckin g fo r no nmatche s, 3 6 -3 7
comparison with HAVING, 92

filtering unwanted data with
views, 167-168

importance of in joins, ll0-I12
operators, 34-35
and order of evaluation,4345
quotes, when to use, 37
and ÍINION, 132
willcards, 51-52

client formatting, 60
CLOSE statement, 192
closing cursors, l9l-192
cloud-based DBMSs, I I
colorcoding, l0l
columns,7-8

all, retrieving, 17

datatypes, 7-8
derived, 65
fully qualified column names, 105,

110
joingd, 115*.
multiple, retrieving, 16
NULL, 153-154
omitting from INSERT statements,

t39
position, sorting by, 28
primary keys,9
sorting

by muhþle colwnns,2T
specífying direction of sort,

29-30
sorling data,25-27
specifying by relative position, 91

value, deleting, 147

combined queries, 127
øeating, using UNION operator,

127-t3l

including or eliminating duplicate
rows, 131-132

sorting results, 132-L33
combining

aggregate functions, 86-87
ïVHERE clauses

withAND operatot 4142
with OR operato\ 4243

comments, 2l-22, 177

COMMIT statement, 182-183
syntax, ?-09-2lO

commits, 181

comparing datatypes, 219
compatibility

function,69-70
operator, 35, 37

concatenating fields, 60-63
constraints, 193-194

check, 197-198
foreign keys, 1 95*1 96
primary keys, 194-195
unique, 19Ç1.97

controlling transactions, I 81-182
copying and pasting data between tables,

t4l-142
COUNTQ tunction,81-82
CREATE INEEJ(statementl sy.ntaxry4{ 0
CREATE PROCEDURE statement, syntax,

210
CREATE SELECT statement, 141-142
CREATE TABLE statement, 151-153

specifying default values, 15 4-L55
syntax, 210
working with NULL values, 153-154

creating
combined queries, using UNION

operator, 127-131,
cursors, 188-189
groups, 90-91
joins,109-ll0

for multìple tables, 113-I 15
primary keys, 19,t-195

clauses

I

stored procedure s, 17 4-17 8
tables, 151-153

working with NULL values,
153-154

views, 164
crossjoins, l12
curency datatypes, 218
cursors, 187-188

closing, l9l-192
creating, 188-189
working with, 188, 189-191

D
data grouping, 89

creating groups, 9G91
data insertion, 135

inserting complete rows, 136-138
inserting multiple rows, 141

inserting partial rows, 138-139
inserting retrieved data, 140-L4l
specifying the column liist, .138

databases, 5-6. See also transaction
processing

breaking up data, 7
failures, 180
indexes, 198-200
relational tables, 107-108
secunty,202
suing,216-217
tables, 6-7

colwnns, T-8
rows, I
schema,7, 179

datatypes, 7-8,74,197
brnary,2t9
comparing,219
currency, 218
date and time,2l8
numerjc,2l,7
reasons for using, 215
user-defined, 198

229

date and time datatypes, 218
date and time functions ,71,74-76
DATEPARIQ tunction,75
Dbz, ll
DBMSs (Database Management Systems),

2,6,13,21
choosing the right one, ll-12
color coding, 101

controlling transactions, I 81-1 82
cursors, 187-188

working with 188, 189-I9I
function compatibility, 69-70
installing, 11

operator compatibility, 37
referential integrity, L93-L94
remote, 11

re served w or ds, 221 -225
rules and restrictions for using views,

1.63-164
stored procedures, L72, I73
triggers, 200-201
user-deflned datatypes, 198

DECLARE, statement, 189
DEFAIJUI values, 155

DELETE statement, syntax, 2ll
deleting

column values, 147
table data, 147-148, 1,49

tables, 157-158
derived columns, 65
DESC keyword, 30
dictionary sort order, 30
DISTINCT keyword, 18, 85-86
DROP statement, syntax, 211
DROP TABLE statement, 157-158

email addresses, partial, searching for, 53
executing, stored p¡,oqe.dures, \7. \74.
extensions, 10

EXTRACTQ tunction,75

EXTRACTQ functlon

(.

\,
(-
\

t,

[_j

E

230 FETCH statement

F
FETCH statement, 189-191
fields. S¿e ølso calculated fields

calculated, 59-60
subqueries a.s, I 03-I 05
using with views, 168-169

trailing spaces, 54
filter conditions,33. See ølso clauses;

operators; wildcards
checking against a single value, 35-36
checking for a range of values, 37-38
checking for no value, 38-39
checking for nonmatche s, 3Ç37
sets, 55
subqueries, 99-103
wildcards, perceût sign (Vo), 52-54

filtering unwanted data with views,
167-168

foreign keys, 9, 148,195-196
and accidental deletion ofrows, 196

formatting ftrnctions, 7 I
FULL OIJTER JOIN syntax, 123

fully qualified column names, 105, 110
funçtions,69

aggregate,T9-80
AVG-), g.Aé/

¿þ¡,rN! ì1!r¡',if j:,,

combiníng,86-87
couNT),81-32
D I ST I N CT ltÊW ord, 85 -86
MAX),82-83
MrN),83-84
performing on distínct values,

85-86
suM),84-8s
using wíth joíns, 123-124

date and time,74-76
DATEPARTO,75
EXTRACT0,75
numenc,TÇ77
problem with, 69-70
SOIJNDEXO,72-74
text manipulati on, 7 l-7 4

TRrM0,63
types of,7È71
UPPER0,71-72

GROUP BY clause, 90-91,94-95
SIoups

creating, 90-91
fltenng,9l-94

guidelines, for updating and deleting data,
149

H-l
HAVING clause,9l-94
icons

Änatysiò, 3 '

Input, 3

Output,3
implicit commits, 182
indexes, 198-200
individual columns, retrieving, 14-15
inline comments,2l-22
innerjoins, tl2-lI3
lnput icon, 3

INSERT SELECT statement, 140-l4l
INSERT statement, 135

column names, 141

inserting complete rows, 136-138
inserting multiple rows, 141

inserting partial rows, 138-139
inserting retrieved data, l4O-1.41.
INTO keyword, 136
omitting columns, 139

omitting required values, 139

specifying the column list, 138
syntax,2ll
and system security, 135

triggers,200-20l
using values, 138

G

MySQL

inserting data. See data insertion
installing, ÞBMSs, 11

IS NULL clause, 38-39

t
joins, 107. $ee also combined queries

with aggregate functions, 123-l'U
columns, 115
conditions, l2+-I25
creating, 109-1 10

crossn 112
FULL OUTER JOIN syntax, 123

importÊnce of the WHERE clause,
ttult2

inner,112-113
maxirnum number of tables in,7l4
for mu_ltiple tables, 113-115
naturâL 120-l2l
ottet l2L-123
and performance, 1 15

reason$ for using, 108-109
self, l18-120
simplifyinS with views, 164-L65
table aliases, 117-118

keys, 193

foreigR, 195-196
primary, 194-195

AS keyword, 63
INTO keyword, 136
FROM keyword,146,148
keywords, 13, 43. See a/sa operators

AND,41-42
AS,63
clauseo, 26
DESC,30
DISTINCT, 18,85-86

FROM, 146,r48
rNTO,136
ToP, L9:21

LIKE operator,5l-52
limiting results, 19-21
Live SQL, 11

manual move process, 157

MariaDB
concatenating fi elds, 6 l-62
controlling transactions, 1 8 1

cursors, l88
date and time functions, 76
and the NOT operator, 48
obtaining sample tables,

?Ã7-208
savepoints, 18,{-185

mathematical calculations, performing,
65-"67

MAXQ function,82-83
Microsoft SQL

cursors, l88
obtaining sample tables,

207-208
savepoints, 18,1-185

stored procedures,176
triggers, 201

MIN0 tunction,83-84
multiple columns, retrieving, 16

MySQL,21
concatenating fields, 6 1-62
cursors, 188
date and time functions,76
obtaining sample tables,

207-208
savepoints, 18zt-185

t

M

(

K

(

(

(l

(-_,

I

(

232

N

naming aliases

naming aliases, 87
naturaljoins, L20*l2l
nonequality operator, compatibility with

other DBMSs, 37
nonmatches, checking for, 3Ç37
nonnumeric data

using MAX0 function with, 83
using MIN0 function with, 84

nonrelational databases, 108

NOT NULL columns, 153-154
NOT operator, 46-48

in MariaDB, 48
NULL value, 82, 84, 147, 153-154

checking for, 38-39
and DEFAULI value, 155

and wildcards, 54
numeric datatypes,217
numeric functions, 74, 7 Ç77

obtaining sample tables, 207-208
ODBC dates, 218
OPEN CURSOR statement, 189
operations, securing, 202
BETIVEEN operator, 37-38
AND operator,41-42
OR operator,42-43
IN operator, 45-46
BETIVEEN operator, T5
OR operator, order of evaluafion,4345
AND operator, order of evaluation,4345
operators

AND,41-42
BETWEEN, 37-38,75
compatibility, 35, 37
concatenation, 60-63
IN,45-46
LIKE,51_52

mathematical, 66-67
NOT,46-48
oR,4243
and order of evaluation, 43-45
TINION

creating combined queries with,
127-t3t

rules, 130-131
WHERE clause, 34-35

Oracle
to_dat€Q firnction, 76
controlling transactions, 181

cursors, 189

obtaining sample tables, 207-?fi8
savepoints, 18zt-185
stored procedures, 175

triggers, 201
ORDER BX çlarsç, ?.ç27,.2&,42. ...

dictionary sort ordeq 30
and GROUP BY, 9,t-95
specifying direction of sort, 29-30

order of evaluation, 4345
outerjoins, l2l-123

in SQLite, 122
Output icon, 3

padding field contents, 54
parentheses, using in WHERE clauses, 45
partial email addresses, searching for.53
partial rows, inserting, 138-139
percent sign (Vo) wildcañ,52-54
performance

and combined queries, 130
and indexes, 199
multiple-table joins, effect on, l15
and views, 163

performing mathematical calculations,
65-ó7

plus sign (+), concatenating fields, 60-61

o

P

SELECT INTO statement

(ÞR

portable code, 70
PostgreSQL

controlling transactions, 1 82
cursors, 189
obtaining sample tables, 207 -208
triggers, 201

predicates, 52. See ø/so operators
primary keys, 9, 108, 194-195

creating, 194-195
indexes, 198-200
and NTILL values, 154
ín SQLite, 195

quotes

in strings, 217
when to use, 37

records, 8. See alsorows
referential integrity, 193-1,9+, 206

foreign keys, 195-196
primary keys, 194-195

reformatting retrieved data with views,
165-167

relational tables, 107-108. See also
transaction processing

referential integrity, 193-194
remote DBMSs, l1
removing, table data, 147-148, 149
renaming

tables, 158

views, 164
replacing, tables, 153

reserved w or ds, 22L -225
restrictions, for using views, 163-164
result sets, 55,187

limiting, 19-21
retrieved data

inserting, 140-l4l
reformatting .with fiçryp, I 9ã:192
result sets, 187

retrieving
columns

all, 17
individual, 14-15
multþle,16

distinct rows, 17-18
reusable views, creating, 165
ROLLBACK statement, I 82

syntax,2l2
rollbacks, 180
rows, 8. ,See a/so joins

accidental deletion of 196
duplicate

ircluding or eliminating in
combined queries, I 3 l-l 3 2

inserting, 136-1,38, l4l
partial, insertin g, 138-139
primary keys, 9
retrieving, 17-18

RTRIMQ function,63
rules, 193

LINION operator, 130-131
for views, 163-t64

sample tables
Customers, 205
obtaining, 207-208
Orderltems, 2AÇ207
Orders,205-206
Products, 204-205
Vendors, 204

SAVEPOINT statement, 1 84-1 85
savepoints, 181, 183-185
schema,1,l79
search pattems, 51. See ølso wildcards

wildcards,53
security. ,See system security
SELECT INTQ statement, l4L-1,42

(

s

ì

L

{

(

(,

{

{

(

234 SELECT statement

SELECT statement, 13. See also clauses;
filter conditions

aliases, 63-65
calculated fietds, 59-60
clause ordering, 96
columns

all colu¡nns, retríeving, 17
indívidunl, retrievíng, I 4- I 5
rnultiple, re tríevíng, I 6

combined queries

creating wíth UNION operator;
127-131

including or elimínatín g
duplícate rows, I 3 I -I i2

sorÍíng results, I 32-l 3 3
concatenating fi elds, 6G-63
joins, 108-109

with ag gregat e functions,
123-124

creating, 109-l I0
FULL OWER JOIN syntax, 123
ímpartance of the WHERE

clause, lI0-I12
ínnet ll2-l13
maximum number of tables ín,

I14
for multþle tables, I I3-I 15
nanral, 120-l2I
outet I2l-123
andperformance, I15
self, llS-120
símplifying with views, 164-165

limiting results, 19-21
ORDER BY clause, '2Á-27,28

reformatting retrieved data with views,
165-r67

rows, retrieving, l7 -L8
subqueries, 99-103

as calculated fields, 103-1 05
synøx,212
testing calculations, 67
WHERE clause, 33-34

selfjoins, ll8-120
server formatting, 60
sets, 55
sorting data,25-27

and case sensitivity, 30
by column position, 28
from combined query results, 132-133
indexes, 198-200
multiple columns, 27
specifying direction of sort, 29-30

SOLJNDEXQ fttnction, 7 Z-7 4
SQL, 1, 10. See also databases; DBMSs

(Database Management Systems);
statements

and application filtering, 34
case sensitivity, 15

client versus server formatting, 60
comrnents,2l-22
extensions, 10
reserved w or ds, 221-225

SQlite
AUIER TABLE statement, 157
date and time functions, 76
obtaining sample tables, 207-208
outerjoins, l22
primary keys, 195

steBs, J87-.., ..

support for stored procedures, 172
views, 161

statements. See also clauses; functions;
keywords; operators; SELECT statement

ALTER TABLE, 155-157, 196
syntax,209

asterisk (*) wildcæd, 17

clauses, 26
cl.osE,192
comments,2l-22
coMMIT,182-183

syntax, 209-210
CREATE INDEX, syntax, 210
CREATE SELECT, 141*142

('
system securlty

CREATE TABLE, 151-153
s p e cilyin I d efaul t v alue s,

154-155
syntax,210
working with NUIL values,

153-154
DECLARE,189
DROP TABLE, 157-158
FETCH,189-191
INSERT,135

çelumn nømes, I4l
insertìng complete rows, 136-138
ínSerting multþle rows, 141
inserting retríeved data, 140-141
onitting columns, 139
ontítting requiref,. values, 139
partial rows, inserrtng, 138-139
syntax,2ll
using values, 138

INSERT SELECT, 1.N-T4L
INSERT statement, specifying the

coluryn list, 138
OPEN CURSOR, 189
ROLLBACK,182

syntax,212
SAVEPOINT, 184-185
SELECT, 13

lìtniting results, I 9-2 I
retríeving all columns, 17
retríevíng disrtnet rows, 17-18
re trí ev in I íniívi dual c o lumn s,

14-1s
retríevíng multíple columns, 16
syntaa 212

stored procedures, 171

creating, 174-178
executing, 173-174
invoking the SOL sewet 176
Mícrosofi SQL vçrsion, 176
Aracle version, 175
reøsons f,ar usìn9,,I72--1.73 ,

terminating, 15

transaction processing, I 8l-182
TRUNCATE TABLE,148
UPDAIE,145_147

syntax, 213
usíng subqueríes in, 146

white space, 15,152
steps, 187. See also cursors
stored procedures, 171

creating, 174-l'78
executlng, 173-174
invoking the SQL sewa, 176
Microsoft SQL version, 176
Oracle version, 175
reasons for using, L72-173
triggers, 200-201

string datatypes, 2lÇ217
quotes,37,2l7

subqueries, 99-L03, 120
as calculaúed fields, 103-105
in UPDATE statements, 146

StlMQ tunction, 84-85
syntax

ALTERTABLE,209
COMMIT statement, 209-210
CREATE INDEX statement, 210
CREATE PROCEDURE statement,

210
CREATE TABLE statement, 21 0
DELETE statement,2lL
DROP statement,2ll
INSERT statement,2ll.
ROLLBACK statement, 212
SELECT statemeît, 2'1.2

UPDATE statemeît,213
system functions, 71
system security, 202

and the DELETE statemerit, 147
stored procedures, 173

and the UPDATE statement, 145

using the INSERT statement, 135

i

1..

I

I

i

(

t.v

(

{

(

236

T

tables

tables,6*7. See also relational tables;
sample tables; views

aliases, 117-118
breaking ap daø,7
columns, 7-8

datatypes, 7-8
derived, 65
multiple, retrieving, 16
position, sorting by, 28
retrieving, l4-15
sorting by multþle,27
specifying direction of sort,

29-30
constraints, 193-1.94
copying and pasting iÍtto, l4l-142
creating, 151-153

working with NIILL values,
153-154

deleting, 157-158
deleting data from, l4i-148, 149
joining,113-115
making copies of, 142
manual move process, 157
names, 6
renamins. 158
: ,..r,ãr,. .V1', t tt r), . ,.i
replacing, 153

retrieving information from, 13

rows, 8

primary keys, 9
schema,7, 179

sorttng data,25-27
updating, 145-147, 155-157

terminating, statements, 15

testing, calculations, 67
text functions, 70
text manipulation functions, 71-74
time and date functions . See date and time

functions
TOP keyword,lg-Zl
trailing spaces, 54-55

transaction processing, l7 9-181
COMMIT statement, 182-183
implicit commits, 182

ROLLBACK statement, 182
savepoints, 183-185

transactions, 180
controlling, 181-182

triggers, 200-201
TRIMQ function,63
TRUNCATE TABLE statement, 148

underscore L) wildcard, 54-55
UNION operator

creating combined queries with,
t27-l3l

including or eliminating duplicate
rows, 131-132

rules,130-131
sorting combined query results,

t32-133
and WHERE clause, 132

unions, 127
unique constraints, 196-197
UPDATE statementn 145-147

FROM keyword, 14ó

syntax, 213
triggers,2O0-20l
using subqueries in, 146

updating data,'l 45-l 47, 155-157
LIPPERQ filr,ction,1l12
user-defined datatypes, 198

views, 161

creatsng,'1,&
filtering unwanted dafa, 167 -168
and performance, 163

reasons for using, 162

u

v

zero chafacters 237

/:"
(:l

/ì

{r

reformatting retrieved data, 165-167
fenaming, 164
reusable, 165

rules and restrictiors, 163-164
simplifying complex joins, lØ-165
using with calculated fields, 168-169

w
WHERE clause, 33-34. See also flJter

co[ditious; subquelies
checking against a single value, 35-36
checking for a range of values, 37-38
checking for nonmatches, 3Ç37
comparison with HAVFi{G, 92
filtering unwanted data with views,

167-168
importance of in joins, \10-ll2
IS NULL,38_39
keywords,43
NOT operator, 46-48

BET\ryEEN operator 37-38
IN operator, 45-46
operators, 34-35
and order of evaluation, 43-45
quotes, when to use, 37
andUNION,132
using parentheses in, 45
wildcards, 51-52

wildcards, 17, 51, 5+-55
brackers (tl), 55-57
case sensitivit¡ 52
and NULL values, 54
percent sign (Vo), 52-54
tips for using, 57
trailing spaces, 54
underscore L), 54-55

X-Y-Z
zero characters,53

(.
'-

L,
(.

(,

(-

To...

... learn about SQL

... retrieve data from a dafabase table

... sort retrieved data

... apply filters to data retrieval

... use advanced filtering techniques

... perform wildcard searçhes

... use calculated fields and aliases

... take advantage of data manipulation functions

... summarize your query results

... group guery results

... use subqueries

... use subqueries

... use advancedjoin types

... combiue queries into a single result set

... insert data into øbles

... update and delete tåble dat¿

... create aRd alter databaæ tables

... create and use views

... learn about stored proÇedures

... implement transactioR processing

... learn about cursors

... use confltraints, indexes, and triggers

Seê...

Page 5

Page 13

Page 25

Page 33

Page 4l
Page 5l
Page 59

Page 69

Page79

Page 89

Page99

Page 107

Page Ll1

Page L27

Page 135

Page 145

Page l5l
Page 16l

Page l7l
Page 179

Page 187

Page 193

(

I

(

\.
tvl

t.
f,,

Frequently Used SQL Statements
AI,TER TÀBT,E

ALTER TABTJE is used to update the schema of an existing table.
To create a new table usc cREATE TABLE.

See Lesson 1.7, "Creating and Manipulating Tbbles."

COMMIT

couurr is used to write a transaction to the database.
See Lesson 20, 'Managing ThansactÍon Processing."

CREATE IITDEX

cREATE rmonx is used to create an index on one or more columns
See Lesson 22r "Understanding Advanced SQL Features."

CREATE TABIJE

cREATE rae¡,e is used to create new database tables.
To update the schema of an existing table use ALIER TABLE.
See Lesson 1.7, 66Creating and Manipulating Tables."

CREjNTE VIEW

cREATE vraw is used to create a new view of one or more tables.
See Lesson 18, ttUsing Views.tt

DEI,ETE

DET,ETE deletes one or more rows from a table.
See Lesson l.6r "Updating and Deleting Data."

DROP

DRop peflnanently removes database objects (tables, views, indexes, and so on).
See Lesson 1.7, ttCreating and Manipulating Tables,t'and Lesson 18,
ttUsing Views."

INSERT

rNsERr adds a single row to a table.
See Lesson 15, ttlnsertingData?'

INSERÎ SEI,ECI

TNsERT sELEcr inserts the results of a sELEcr into a table.
See Lesson l5r tlnserting Data.tt

ROI¡TJBACK

RoLLBACK is used to undo a transaction block.
See læsson 20, 'Managing Tfansaction Processing."

SEf.ECf

sELEcr is used to retrieve data from one or more tables (or views).
See Lesson 2, ¡¡Retrieving Datal'Lesson 3, 'Sorting Retrieved Datar" and
Lesson 4, '6Filtering Datal'(Lessons 2 through 1.4 all cover various aspects
of SELECT).

UPDATE

UIDATE updates one or more rows in a table.
See Lesson 16, "UpdatÍng and Deleting Data:'

(t .

(:

(

(

(,

(

(

(.

f,,

t-,

L..,

(_,

\, .,

¡rBd¡rndrD!

REGULAR
EXPRESSI O NS

irt¡

LEARNING

Learn to use one of the most powerful text processing
and manipulation tools available

Ben Forta's Learning Regular Expressions teaches you the
regular expressions that you really need to know in order
to perform all sorts of sophisticated text processing and
manipulation in just about every language and on every
platform.

i nform ¡t.com/exp ress ions

infomrT,Gom@
Pearson the trustèd technology lêarnlng sourcê

SamsTeachYourself

Sams leach Yourse/f SQL in lO Mínutes offers
straightforward, practical answers when you need
fast results.

By working through the book's 22 lessons of
10 minutes or less, you'll learn what you need to
know to take advantage of the SQL language.

Lessons cover IBM DB2, Microsoft SQL Server
and SQL Server Express, MariaDB, MySQL,
Oracle and Oracle express, PostgreSQL, and SQLite.

Fullcolor code examples help you understand
how SQL statements are structured

Tips point out shortcuts and solutions

Gautions help you avoid common pitfalls

Notes explain additional concepts, and provide
additional information

Ben Forta is Adobe's Senior Director of Education
lnitiatives, an educator, lecturer, and author of
more than 40 books including titles on SQL,
Regular Expressions, and more.

i nform it.com/teachyou rself

F¡fth Edition

1O minutes is all you need
to learn how to...
¡ Use the major SQL statements
r Construct complex SQI statements

us¡ng multiple clauses and operators
r Retrleve, sort, and format database

contents
I Pinpoint the data you need using

a variety of filtering techniques
r Use aggreÊlate funct¡ons to

summarize data

r Join two or more related tables
I lnseft, update, and delete data

r Create and alter database tables

¡ Work with views, stored
procedures, and mofe

Register your book at
informit.comlre¡lister f or
convenient access to any downloads,
updates, or corrections as they
become available.

Category: Programming/Databases
Covers: SQL
User Level: Beginning-lntermed¡ate
cover lmage: m¡ckyteam/Shutterstock

ISBN-13: 978-0-13-518279-6
ISBN-10: 0-13-518279-4

, llililllilUllll[ill|tll lnuuurfll

slttts

@Pearson
Ël

I I

	20240109152140_COVER
	PS20240109_TEACH YOURSELF SQL IN 10 MINUTES_20240109163613
	20240109152140_COVER
	Lege pagina
	Lege pagina

